| Step |
Hyp |
Ref |
Expression |
| 1 |
|
haustop |
|
| 2 |
|
xkotop |
|
| 3 |
1 2
|
sylan2 |
|
| 4 |
|
eqid |
|
| 5 |
4
|
xkouni |
|
| 6 |
1 5
|
sylan2 |
|
| 7 |
6
|
eleq2d |
|
| 8 |
6
|
eleq2d |
|
| 9 |
7 8
|
anbi12d |
|
| 10 |
|
simprl |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
11 12
|
cnf |
|
| 14 |
10 13
|
syl |
|
| 15 |
14
|
ffnd |
|
| 16 |
|
simprr |
|
| 17 |
11 12
|
cnf |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
ffnd |
|
| 20 |
|
eqfnfv |
|
| 21 |
15 19 20
|
syl2anc |
|
| 22 |
21
|
necon3abid |
|
| 23 |
|
rexnal |
|
| 24 |
|
df-ne |
|
| 25 |
|
simpllr |
|
| 26 |
14
|
adantr |
|
| 27 |
|
simprl |
|
| 28 |
26 27
|
ffvelcdmd |
|
| 29 |
18
|
adantr |
|
| 30 |
29 27
|
ffvelcdmd |
|
| 31 |
|
simprr |
|
| 32 |
12
|
hausnei |
|
| 33 |
25 28 30 31 32
|
syl13anc |
|
| 34 |
33
|
expr |
|
| 35 |
24 34
|
biimtrrid |
|
| 36 |
|
simp-4l |
|
| 37 |
1
|
ad4antlr |
|
| 38 |
|
simplr |
|
| 39 |
38
|
snssd |
|
| 40 |
|
toptopon2 |
|
| 41 |
36 40
|
sylib |
|
| 42 |
|
restsn2 |
|
| 43 |
41 38 42
|
syl2anc |
|
| 44 |
|
snfi |
|
| 45 |
|
discmp |
|
| 46 |
44 45
|
mpbi |
|
| 47 |
43 46
|
eqeltrdi |
|
| 48 |
|
simprll |
|
| 49 |
11 36 37 39 47 48
|
xkoopn |
|
| 50 |
|
simprlr |
|
| 51 |
11 36 37 39 47 50
|
xkoopn |
|
| 52 |
|
imaeq1 |
|
| 53 |
52
|
sseq1d |
|
| 54 |
10
|
ad2antrr |
|
| 55 |
15
|
ad2antrr |
|
| 56 |
|
fnsnfv |
|
| 57 |
55 38 56
|
syl2anc |
|
| 58 |
|
simprr1 |
|
| 59 |
58
|
snssd |
|
| 60 |
57 59
|
eqsstrrd |
|
| 61 |
53 54 60
|
elrabd |
|
| 62 |
|
imaeq1 |
|
| 63 |
62
|
sseq1d |
|
| 64 |
16
|
ad2antrr |
|
| 65 |
19
|
ad2antrr |
|
| 66 |
|
fnsnfv |
|
| 67 |
65 38 66
|
syl2anc |
|
| 68 |
|
simprr2 |
|
| 69 |
68
|
snssd |
|
| 70 |
67 69
|
eqsstrrd |
|
| 71 |
63 64 70
|
elrabd |
|
| 72 |
|
inrab |
|
| 73 |
|
simpllr |
|
| 74 |
11 12
|
cnf |
|
| 75 |
74
|
fdmd |
|
| 76 |
75
|
adantl |
|
| 77 |
73 76
|
eleqtrrd |
|
| 78 |
|
simprr3 |
|
| 79 |
78
|
adantr |
|
| 80 |
|
sseq0 |
|
| 81 |
80
|
expcom |
|
| 82 |
79 81
|
syl |
|
| 83 |
|
imadisj |
|
| 84 |
|
disjsn |
|
| 85 |
83 84
|
bitri |
|
| 86 |
82 85
|
imbitrdi |
|
| 87 |
77 86
|
mt2d |
|
| 88 |
|
ssin |
|
| 89 |
87 88
|
sylnibr |
|
| 90 |
89
|
ralrimiva |
|
| 91 |
|
rabeq0 |
|
| 92 |
90 91
|
sylibr |
|
| 93 |
72 92
|
eqtrid |
|
| 94 |
|
eleq2 |
|
| 95 |
|
ineq1 |
|
| 96 |
95
|
eqeq1d |
|
| 97 |
94 96
|
3anbi13d |
|
| 98 |
|
eleq2 |
|
| 99 |
|
ineq2 |
|
| 100 |
99
|
eqeq1d |
|
| 101 |
98 100
|
3anbi23d |
|
| 102 |
97 101
|
rspc2ev |
|
| 103 |
49 51 61 71 93 102
|
syl113anc |
|
| 104 |
103
|
expr |
|
| 105 |
104
|
rexlimdvva |
|
| 106 |
35 105
|
syld |
|
| 107 |
106
|
rexlimdva |
|
| 108 |
23 107
|
biimtrrid |
|
| 109 |
22 108
|
sylbid |
|
| 110 |
109
|
ex |
|
| 111 |
9 110
|
sylbird |
|
| 112 |
111
|
ralrimivv |
|
| 113 |
|
eqid |
|
| 114 |
113
|
ishaus |
|
| 115 |
3 112 114
|
sylanbrc |
|