Metamath Proof Explorer


Theorem xrge0iifhom

Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F=x01ifx=0+∞logx
xrge0iifhmeo.k J=ordTop𝑡0+∞
Assertion xrge0iifhom X01Y01FXY=FX+𝑒FY

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 xrge0iifhmeo.k J=ordTop𝑡0+∞
3 0xr 0*
4 1xr 1*
5 0le1 01
6 snunioc 0*1*01001=01
7 3 4 5 6 mp3an 001=01
8 7 eleq2i Y001Y01
9 elun Y001Y0Y01
10 8 9 bitr3i Y01Y0Y01
11 elsni Y0Y=0
12 11 orim1i Y0Y01Y=0Y01
13 10 12 sylbi Y01Y=0Y01
14 0elunit 001
15 iftrue x=0ifx=0+∞logx=+∞
16 pnfex +∞V
17 15 1 16 fvmpt 001F0=+∞
18 14 17 ax-mp F0=+∞
19 18 oveq2i FX+𝑒F0=FX+𝑒+∞
20 eqeq1 x=Xx=0X=0
21 fveq2 x=Xlogx=logX
22 21 negeqd x=Xlogx=logX
23 20 22 ifbieq2d x=Xifx=0+∞logx=ifX=0+∞logX
24 negex logXV
25 16 24 ifex ifX=0+∞logXV
26 23 1 25 fvmpt X01FX=ifX=0+∞logX
27 pnfxr +∞*
28 27 a1i X01X=0+∞*
29 elunitrn X01X
30 29 adantr X01¬X=0X
31 elunitge0 X010X
32 31 adantr X01¬X=00X
33 simpr X01¬X=0¬X=0
34 33 neqned X01¬X=0X0
35 30 32 34 ne0gt0d X01¬X=00<X
36 30 35 elrpd X01¬X=0X+
37 36 relogcld X01¬X=0logX
38 37 renegcld X01¬X=0logX
39 38 rexrd X01¬X=0logX*
40 28 39 ifclda X01ifX=0+∞logX*
41 26 40 eqeltrd X01FX*
42 41 adantr X01Y=0FX*
43 neeq1 +∞=ifX=0+∞logX+∞−∞ifX=0+∞logX−∞
44 neeq1 logX=ifX=0+∞logXlogX−∞ifX=0+∞logX−∞
45 pnfnemnf +∞−∞
46 45 a1i X01X=0+∞−∞
47 38 renemnfd X01¬X=0logX−∞
48 43 44 46 47 ifbothda X01ifX=0+∞logX−∞
49 26 48 eqnetrd X01FX−∞
50 49 adantr X01Y=0FX−∞
51 xaddpnf1 FX*FX−∞FX+𝑒+∞=+∞
52 42 50 51 syl2anc X01Y=0FX+𝑒+∞=+∞
53 19 52 eqtrid X01Y=0FX+𝑒F0=+∞
54 unitsscn 01
55 simpl X01Y=0X01
56 54 55 sselid X01Y=0X
57 56 mul01d X01Y=0X0=0
58 57 fveq2d X01Y=0FX0=F0
59 58 18 eqtrdi X01Y=0FX0=+∞
60 53 59 eqtr4d X01Y=0FX+𝑒F0=FX0
61 simpr X01Y=0Y=0
62 61 fveq2d X01Y=0FY=F0
63 62 oveq2d X01Y=0FX+𝑒FY=FX+𝑒F0
64 61 oveq2d X01Y=0XY=X0
65 64 fveq2d X01Y=0FXY=FX0
66 60 63 65 3eqtr4rd X01Y=0FXY=FX+𝑒FY
67 7 eleq2i X001X01
68 elun X001X0X01
69 67 68 bitr3i X01X0X01
70 elsni X0X=0
71 70 orim1i X0X01X=0X01
72 69 71 sylbi X01X=0X01
73 18 oveq1i F0+𝑒FY=+∞+𝑒FY
74 simpr X=0Y01Y01
75 1 xrge0iifcv Y01FY=logY
76 0le0 00
77 1re 1
78 ltpnf 11<+∞
79 77 78 ax-mp 1<+∞
80 iocssioo 0*+∞*001<+∞010+∞
81 3 27 76 79 80 mp4an 010+∞
82 ioorp 0+∞=+
83 81 82 sseqtri 01+
84 83 sseli Y01Y+
85 84 relogcld Y01logY
86 85 renegcld Y01logY
87 75 86 eqeltrd Y01FY
88 87 rexrd Y01FY*
89 74 88 syl X=0Y01FY*
90 87 renemnfd Y01FY−∞
91 74 90 syl X=0Y01FY−∞
92 xaddpnf2 FY*FY−∞+∞+𝑒FY=+∞
93 89 91 92 syl2anc X=0Y01+∞+𝑒FY=+∞
94 73 93 eqtrid X=0Y01F0+𝑒FY=+∞
95 rpssre +
96 83 95 sstri 01
97 ax-resscn
98 96 97 sstri 01
99 98 74 sselid X=0Y01Y
100 99 mul02d X=0Y010Y=0
101 100 fveq2d X=0Y01F0Y=F0
102 101 18 eqtrdi X=0Y01F0Y=+∞
103 94 102 eqtr4d X=0Y01F0+𝑒FY=F0Y
104 simpl X=0Y01X=0
105 104 fveq2d X=0Y01FX=F0
106 105 oveq1d X=0Y01FX+𝑒FY=F0+𝑒FY
107 104 fvoveq1d X=0Y01FXY=F0Y
108 103 106 107 3eqtr4rd X=0Y01FXY=FX+𝑒FY
109 simpl X01Y01X01
110 83 109 sselid X01Y01X+
111 110 relogcld X01Y01logX
112 111 renegcld X01Y01logX
113 simpr X01Y01Y01
114 83 113 sselid X01Y01Y+
115 114 relogcld X01Y01logY
116 115 renegcld X01Y01logY
117 rexadd logXlogYlogX+𝑒logY=-logX+logY
118 112 116 117 syl2anc X01Y01logX+𝑒logY=-logX+logY
119 1 xrge0iifcv X01FX=logX
120 119 75 oveqan12d X01Y01FX+𝑒FY=logX+𝑒logY
121 110 rpred X01Y01X
122 114 rpred X01Y01Y
123 121 122 remulcld X01Y01XY
124 110 rpgt0d X01Y010<X
125 114 rpgt0d X01Y010<Y
126 121 122 124 125 mulgt0d X01Y010<XY
127 iocssicc 0101
128 127 109 sselid X01Y01X01
129 127 113 sselid X01Y01Y01
130 iimulcl X01Y01XY01
131 128 129 130 syl2anc X01Y01XY01
132 elicc01 XY01XY0XYXY1
133 132 simp3bi XY01XY1
134 131 133 syl X01Y01XY1
135 elioc2 0*1XY01XY0<XYXY1
136 3 77 135 mp2an XY01XY0<XYXY1
137 123 126 134 136 syl3anbrc X01Y01XY01
138 1 xrge0iifcv XY01FXY=logXY
139 137 138 syl X01Y01FXY=logXY
140 110 114 relogmuld X01Y01logXY=logX+logY
141 140 negeqd X01Y01logXY=logX+logY
142 111 recnd X01Y01logX
143 115 recnd X01Y01logY
144 142 143 negdid X01Y01logX+logY=-logX+logY
145 139 141 144 3eqtrd X01Y01FXY=-logX+logY
146 118 120 145 3eqtr4rd X01Y01FXY=FX+𝑒FY
147 108 146 jaoian X=0X01Y01FXY=FX+𝑒FY
148 72 147 sylan X01Y01FXY=FX+𝑒FY
149 66 148 jaodan X01Y=0Y01FXY=FX+𝑒FY
150 13 149 sylan2 X01Y01FXY=FX+𝑒FY