Metamath Proof Explorer


Theorem xrsxmet

Description: The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypothesis xrsxmet.1 ⊒D=dist⁑ℝ𝑠*
Assertion xrsxmet ⊒D∈∞Met⁑ℝ*

Proof

Step Hyp Ref Expression
1 xrsxmet.1 ⊒D=dist⁑ℝ𝑠*
2 xrex βŠ’β„*∈V
3 2 a1i βŠ’βŠ€β†’β„*∈V
4 id ⊒yβˆˆβ„*β†’yβˆˆβ„*
5 xnegcl ⊒xβˆˆβ„*β†’βˆ’xβˆˆβ„*
6 xaddcl ⊒yβˆˆβ„*βˆ§βˆ’xβˆˆβ„*β†’y+π‘’βˆ’xβˆˆβ„*
7 4 5 6 syl2anr ⊒xβˆˆβ„*∧yβˆˆβ„*β†’y+π‘’βˆ’xβˆˆβ„*
8 xnegcl ⊒yβˆˆβ„*β†’βˆ’yβˆˆβ„*
9 xaddcl ⊒xβˆˆβ„*βˆ§βˆ’yβˆˆβ„*β†’x+π‘’βˆ’yβˆˆβ„*
10 8 9 sylan2 ⊒xβˆˆβ„*∧yβˆˆβ„*β†’x+π‘’βˆ’yβˆˆβ„*
11 7 10 ifcld ⊒xβˆˆβ„*∧yβˆˆβ„*β†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβˆˆβ„*
12 11 rgen2 βŠ’βˆ€xβˆˆβ„*βˆ€yβˆˆβ„*ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβˆˆβ„*
13 1 xrsds ⊒D=xβˆˆβ„*,yβˆˆβ„*⟼ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y
14 13 fmpo βŠ’βˆ€xβˆˆβ„*βˆ€yβˆˆβ„*ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβˆˆβ„*↔D:ℝ*×ℝ*βŸΆβ„*
15 12 14 mpbi ⊒D:ℝ*×ℝ*βŸΆβ„*
16 15 a1i βŠ’βŠ€β†’D:ℝ*×ℝ*βŸΆβ„*
17 breq2 ⊒y+π‘’βˆ’x=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβ†’0≀y+π‘’βˆ’x↔0≀ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y
18 breq2 ⊒x+π‘’βˆ’y=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβ†’0≀x+π‘’βˆ’y↔0≀ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y
19 xsubge0 ⊒yβˆˆβ„*∧xβˆˆβ„*β†’0≀y+π‘’βˆ’x↔x≀y
20 19 ancoms ⊒xβˆˆβ„*∧yβˆˆβ„*β†’0≀y+π‘’βˆ’x↔x≀y
21 20 biimpar ⊒xβˆˆβ„*∧yβˆˆβ„*∧x≀yβ†’0≀y+π‘’βˆ’x
22 xrletri ⊒xβˆˆβ„*∧yβˆˆβ„*β†’x≀y∨y≀x
23 22 orcanai ⊒xβˆˆβ„*∧yβˆˆβ„*∧¬x≀yβ†’y≀x
24 xsubge0 ⊒xβˆˆβ„*∧yβˆˆβ„*β†’0≀x+π‘’βˆ’y↔y≀x
25 24 biimpar ⊒xβˆˆβ„*∧yβˆˆβ„*∧y≀xβ†’0≀x+π‘’βˆ’y
26 23 25 syldan ⊒xβˆˆβ„*∧yβˆˆβ„*∧¬x≀yβ†’0≀x+π‘’βˆ’y
27 17 18 21 26 ifbothda ⊒xβˆˆβ„*∧yβˆˆβ„*β†’0≀ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y
28 1 xrsdsval ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y
29 27 28 breqtrrd ⊒xβˆˆβ„*∧yβˆˆβ„*β†’0≀xDy
30 29 adantl ⊒⊀∧xβˆˆβ„*∧yβˆˆβ„*β†’0≀xDy
31 29 biantrud ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy≀0↔xDy≀0∧0≀xDy
32 28 11 eqeltrd ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDyβˆˆβ„*
33 0xr ⊒0βˆˆβ„*
34 xrletri3 ⊒xDyβˆˆβ„*∧0βˆˆβ„*β†’xDy=0↔xDy≀0∧0≀xDy
35 32 33 34 sylancl ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy=0↔xDy≀0∧0≀xDy
36 simpr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧x=yβ†’x=y
37 simplr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xDy=0
38 0re ⊒0βˆˆβ„
39 37 38 eqeltrdi ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xDyβˆˆβ„
40 1 xrsdsreclb ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’xDyβˆˆβ„β†”xβˆˆβ„βˆ§yβˆˆβ„
41 40 ad4ant124 ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xDyβˆˆβ„β†”xβˆˆβ„βˆ§yβˆˆβ„
42 39 41 mpbid ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xβˆˆβ„βˆ§yβˆˆβ„
43 42 simpld ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xβˆˆβ„
44 43 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xβˆˆβ„‚
45 42 simprd ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’yβˆˆβ„
46 45 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’yβˆˆβ„‚
47 rexsub ⊒xβˆˆβ„βˆ§yβˆˆβ„β†’x+π‘’βˆ’y=xβˆ’y
48 42 47 syl ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’x+π‘’βˆ’y=xβˆ’y
49 28 eqeq1d ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy=0↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0
50 49 biimpa ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0β†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0
51 50 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0
52 xneg11 ⊒y+π‘’βˆ’xβˆˆβ„*∧0βˆˆβ„*β†’βˆ’y+π‘’βˆ’x=βˆ’0↔y+π‘’βˆ’x=0
53 7 33 52 sylancl ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’y+π‘’βˆ’x=βˆ’0↔y+π‘’βˆ’x=0
54 simpr ⊒xβˆˆβ„*∧yβˆˆβ„*β†’yβˆˆβ„*
55 5 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’xβˆˆβ„*
56 xnegdi ⊒yβˆˆβ„*βˆ§βˆ’xβˆˆβ„*β†’βˆ’y+π‘’βˆ’x=βˆ’y+π‘’βˆ’βˆ’x
57 54 55 56 syl2anc ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’y+π‘’βˆ’x=βˆ’y+π‘’βˆ’βˆ’x
58 xnegneg ⊒xβˆˆβ„*β†’βˆ’βˆ’x=x
59 58 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’βˆ’x=x
60 59 oveq2d ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’y+π‘’βˆ’βˆ’x=βˆ’y+𝑒x
61 8 adantl ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’yβˆˆβ„*
62 simpl ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xβˆˆβ„*
63 xaddcom βŠ’βˆ’yβˆˆβ„*∧xβˆˆβ„*β†’βˆ’y+𝑒x=x+π‘’βˆ’y
64 61 62 63 syl2anc ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’y+𝑒x=x+π‘’βˆ’y
65 57 60 64 3eqtrd ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’y+π‘’βˆ’x=x+π‘’βˆ’y
66 xneg0 βŠ’βˆ’0=0
67 66 a1i ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’0=0
68 65 67 eqeq12d ⊒xβˆˆβ„*∧yβˆˆβ„*β†’βˆ’y+π‘’βˆ’x=βˆ’0↔x+π‘’βˆ’y=0
69 53 68 bitr3d ⊒xβˆˆβ„*∧yβˆˆβ„*β†’y+π‘’βˆ’x=0↔x+π‘’βˆ’y=0
70 69 ad2antrr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’y+π‘’βˆ’x=0↔x+π‘’βˆ’y=0
71 biidd ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’x+π‘’βˆ’y=0↔x+π‘’βˆ’y=0
72 eqeq1 ⊒y+π‘’βˆ’x=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβ†’y+π‘’βˆ’x=0↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0
73 72 bibi1d ⊒y+π‘’βˆ’x=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβ†’y+π‘’βˆ’x=0↔x+π‘’βˆ’y=0↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0↔x+π‘’βˆ’y=0
74 eqeq1 ⊒x+π‘’βˆ’y=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβ†’x+π‘’βˆ’y=0↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0
75 74 bibi1d ⊒x+π‘’βˆ’y=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’yβ†’x+π‘’βˆ’y=0↔x+π‘’βˆ’y=0↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0↔x+π‘’βˆ’y=0
76 73 75 ifboth ⊒y+π‘’βˆ’x=0↔x+π‘’βˆ’y=0∧x+π‘’βˆ’y=0↔x+π‘’βˆ’y=0β†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0↔x+π‘’βˆ’y=0
77 70 71 76 syl2anc ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=0↔x+π‘’βˆ’y=0
78 51 77 mpbid ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’x+π‘’βˆ’y=0
79 48 78 eqtr3d ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’xβˆ’y=0
80 44 46 79 subeq0d ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0∧xβ‰ yβ†’x=y
81 36 80 pm2.61dane ⊒xβˆˆβ„*∧yβˆˆβ„*∧xDy=0β†’x=y
82 81 ex ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy=0β†’x=y
83 1 xrsdsval ⊒yβˆˆβ„*∧yβˆˆβ„*β†’yDy=ify≀yy+π‘’βˆ’yy+π‘’βˆ’y
84 83 anidms ⊒yβˆˆβ„*β†’yDy=ify≀yy+π‘’βˆ’yy+π‘’βˆ’y
85 xrleid ⊒yβˆˆβ„*β†’y≀y
86 85 iftrued ⊒yβˆˆβ„*β†’ify≀yy+π‘’βˆ’yy+π‘’βˆ’y=y+π‘’βˆ’y
87 xnegid ⊒yβˆˆβ„*β†’y+π‘’βˆ’y=0
88 84 86 87 3eqtrd ⊒yβˆˆβ„*β†’yDy=0
89 88 adantl ⊒xβˆˆβ„*∧yβˆˆβ„*β†’yDy=0
90 oveq1 ⊒x=yβ†’xDy=yDy
91 90 eqeq1d ⊒x=yβ†’xDy=0↔yDy=0
92 89 91 syl5ibrcom ⊒xβˆˆβ„*∧yβˆˆβ„*β†’x=yβ†’xDy=0
93 82 92 impbid ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy=0↔x=y
94 31 35 93 3bitr2d ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy≀0↔x=y
95 94 adantl ⊒⊀∧xβˆˆβ„*∧yβˆˆβ„*β†’xDy≀0↔x=y
96 simplrr ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDyβˆˆβ„
97 96 leidd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDy≀zDy
98 simpr ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’z=x
99 98 oveq1d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDy=xDy
100 98 oveq1d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDx=xDx
101 simpll1 ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’xβˆˆβ„*
102 oveq12 ⊒y=x∧y=xβ†’yDy=xDx
103 102 anidms ⊒y=xβ†’yDy=xDx
104 103 eqeq1d ⊒y=xβ†’yDy=0↔xDx=0
105 104 88 vtoclga ⊒xβˆˆβ„*β†’xDx=0
106 101 105 syl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’xDx=0
107 100 106 eqtrd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDx=0
108 107 oveq1d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDx+zDy=0+zDy
109 96 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDyβˆˆβ„‚
110 109 addlidd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’0+zDy=zDy
111 108 110 eqtr2d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’zDy=zDx+zDy
112 97 99 111 3brtr3d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=xβ†’xDy≀zDx+zDy
113 simpr ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’z=y
114 113 oveq1d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’zDx=yDx
115 simplrl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’zDxβˆˆβ„
116 114 115 eqeltrrd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’yDxβˆˆβ„
117 116 leidd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’yDx≀yDx
118 simpll1 ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’xβˆˆβ„*
119 simpll2 ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’yβˆˆβ„*
120 oveq2 ⊒x=yβ†’yDx=yDy
121 90 120 eqtr4d ⊒x=yβ†’xDy=yDx
122 121 adantl ⊒xβˆˆβ„*∧yβˆˆβ„*∧x=yβ†’xDy=yDx
123 eqeq2 ⊒x+π‘’βˆ’y=ify≀xx+π‘’βˆ’yy+π‘’βˆ’xβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=x+π‘’βˆ’y↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=ify≀xx+π‘’βˆ’yy+π‘’βˆ’x
124 eqeq2 ⊒y+π‘’βˆ’x=ify≀xx+π‘’βˆ’yy+π‘’βˆ’xβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=y+π‘’βˆ’x↔ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=ify≀xx+π‘’βˆ’yy+π‘’βˆ’x
125 xrleloe ⊒xβˆˆβ„*∧yβˆˆβ„*β†’x≀y↔x<y∨x=y
126 125 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’x≀y↔x<y∨x=y
127 simpr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’xβ‰ y
128 127 neneqd ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’Β¬x=y
129 biorf ⊒¬x=yβ†’x<y↔x=y∨x<y
130 orcom ⊒x=y∨x<y↔x<y∨x=y
131 129 130 bitrdi ⊒¬x=yβ†’x<y↔x<y∨x=y
132 128 131 syl ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’x<y↔x<y∨x=y
133 xrltnle ⊒xβˆˆβ„*∧yβˆˆβ„*β†’x<y↔¬y≀x
134 133 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’x<y↔¬y≀x
135 126 132 134 3bitr2d ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’x≀y↔¬y≀x
136 135 con2bid ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’y≀x↔¬x≀y
137 136 biimpa ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ y∧y≀xβ†’Β¬x≀y
138 137 iffalsed ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ y∧y≀xβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=x+π‘’βˆ’y
139 135 biimpar ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ y∧¬y≀xβ†’x≀y
140 139 iftrued ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ y∧¬y≀xβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=y+π‘’βˆ’x
141 123 124 138 140 ifbothda ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y=ify≀xx+π‘’βˆ’yy+π‘’βˆ’x
142 28 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’xDy=ifx≀yy+π‘’βˆ’xx+π‘’βˆ’y
143 1 xrsdsval ⊒yβˆˆβ„*∧xβˆˆβ„*β†’yDx=ify≀xx+π‘’βˆ’yy+π‘’βˆ’x
144 143 ancoms ⊒xβˆˆβ„*∧yβˆˆβ„*β†’yDx=ify≀xx+π‘’βˆ’yy+π‘’βˆ’x
145 144 adantr ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’yDx=ify≀xx+π‘’βˆ’yy+π‘’βˆ’x
146 141 142 145 3eqtr4d ⊒xβˆˆβ„*∧yβˆˆβ„*∧xβ‰ yβ†’xDy=yDx
147 122 146 pm2.61dane ⊒xβˆˆβ„*∧yβˆˆβ„*β†’xDy=yDx
148 118 119 147 syl2anc ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’xDy=yDx
149 113 oveq1d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’zDy=yDy
150 119 88 syl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’yDy=0
151 149 150 eqtrd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’zDy=0
152 114 151 oveq12d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’zDx+zDy=yDx+0
153 116 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’yDxβˆˆβ„‚
154 153 addridd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’yDx+0=yDx
155 152 154 eqtrd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’zDx+zDy=yDx
156 117 148 155 3brtr4d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§z=yβ†’xDy≀zDx+zDy
157 simplrl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDxβˆˆβ„
158 simpll3 ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβˆˆβ„*
159 simpll1 ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’xβˆˆβ„*
160 simprl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβ‰ x
161 1 xrsdsreclb ⊒zβˆˆβ„*∧xβˆˆβ„*∧zβ‰ xβ†’zDxβˆˆβ„β†”zβˆˆβ„βˆ§xβˆˆβ„
162 158 159 160 161 syl3anc ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDxβˆˆβ„β†”zβˆˆβ„βˆ§xβˆˆβ„
163 157 162 mpbid ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβˆˆβ„βˆ§xβˆˆβ„
164 163 simprd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’xβˆˆβ„
165 164 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’xβˆˆβ„‚
166 simplrr ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDyβˆˆβ„
167 simpll2 ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’yβˆˆβ„*
168 simprr ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβ‰ y
169 1 xrsdsreclb ⊒zβˆˆβ„*∧yβˆˆβ„*∧zβ‰ yβ†’zDyβˆˆβ„β†”zβˆˆβ„βˆ§yβˆˆβ„
170 158 167 168 169 syl3anc ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDyβˆˆβ„β†”zβˆˆβ„βˆ§yβˆˆβ„
171 166 170 mpbid ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβˆˆβ„βˆ§yβˆˆβ„
172 171 simprd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’yβˆˆβ„
173 172 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’yβˆˆβ„‚
174 163 simpld ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβˆˆβ„
175 174 recnd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβˆˆβ„‚
176 165 173 175 abs3difd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’xβˆ’y≀xβˆ’z+zβˆ’y
177 1 xrsdsreval ⊒xβˆˆβ„βˆ§yβˆˆβ„β†’xDy=xβˆ’y
178 164 172 177 syl2anc ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’xDy=xβˆ’y
179 1 xrsdsreval ⊒zβˆˆβ„βˆ§xβˆˆβ„β†’zDx=zβˆ’x
180 163 179 syl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDx=zβˆ’x
181 175 165 abssubd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zβˆ’x=xβˆ’z
182 180 181 eqtrd ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDx=xβˆ’z
183 1 xrsdsreval ⊒zβˆˆβ„βˆ§yβˆˆβ„β†’zDy=zβˆ’y
184 171 183 syl ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDy=zβˆ’y
185 182 184 oveq12d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’zDx+zDy=xβˆ’z+zβˆ’y
186 176 178 185 3brtr4d ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„βˆ§zβ‰ x∧zβ‰ yβ†’xDy≀zDx+zDy
187 112 156 186 pm2.61da2ne ⊒xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„β†’xDy≀zDx+zDy
188 187 3adant1 ⊒⊀∧xβˆˆβ„*∧yβˆˆβ„*∧zβˆˆβ„*∧zDxβˆˆβ„βˆ§zDyβˆˆβ„β†’xDy≀zDx+zDy
189 3 16 30 95 188 isxmet2d βŠ’βŠ€β†’D∈∞Met⁑ℝ*
190 189 mptru ⊒D∈∞Met⁑ℝ*