Metamath Proof Explorer


Theorem zprod

Description: Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypotheses zprod.1 Z=M
zprod.2 φM
zprod.3 φnZyy0seqn×Fy
zprod.4 φAZ
zprod.5 φkZFk=ifkAB1
zprod.6 φkAB
Assertion zprod φkAB=seqM×F

Proof

Step Hyp Ref Expression
1 zprod.1 Z=M
2 zprod.2 φM
3 zprod.3 φnZyy0seqn×Fy
4 zprod.4 φAZ
5 zprod.5 φkZFk=ifkAB1
6 zprod.6 φkAB
7 3simpb Amnmyy0seqn×kifkAB1yseqm×kifkAB1xAmseqm×kifkAB1x
8 nfcv _iifkAB1
9 nfv kiA
10 nfcsb1v _ki/kB
11 nfcv _k1
12 9 10 11 nfif _kifiAi/kB1
13 eleq1w k=ikAiA
14 csbeq1a k=iB=i/kB
15 13 14 ifbieq1d k=iifkAB1=ifiAi/kB1
16 8 12 15 cbvmpt kifkAB1=iifiAi/kB1
17 simpll φmAmφ
18 6 ralrimiva φkAB
19 10 nfel1 ki/kB
20 14 eleq1d k=iBi/kB
21 19 20 rspc iAkABi/kB
22 18 21 syl5 iAφi/kB
23 17 22 mpan9 φmAmiAi/kB
24 simplr φmAmm
25 2 ad2antrr φmAmM
26 simpr φmAmAm
27 4 1 sseqtrdi φAM
28 27 ad2antrr φmAmAM
29 16 23 24 25 26 28 prodrb φmAmseqm×kifkAB1xseqM×kifkAB1x
30 29 biimpd φmAmseqm×kifkAB1xseqM×kifkAB1x
31 30 expimpd φmAmseqm×kifkAB1xseqM×kifkAB1x
32 7 31 syl5 φmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xseqM×kifkAB1x
33 32 rexlimdva φmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xseqM×kifkAB1x
34 uzssz M
35 zssre
36 34 35 sstri M
37 1 36 eqsstri Z
38 4 37 sstrdi φA
39 38 ad2antrr φmf:1m1-1 ontoAA
40 ltso <Or
41 soss A<Or<OrA
42 39 40 41 mpisyl φmf:1m1-1 ontoA<OrA
43 fzfi 1mFin
44 ovex 1mV
45 44 f1oen f:1m1-1 ontoA1mA
46 45 adantl φmf:1m1-1 ontoA1mA
47 46 ensymd φmf:1m1-1 ontoAA1m
48 enfii 1mFinA1mAFin
49 43 47 48 sylancr φmf:1m1-1 ontoAAFin
50 fz1iso <OrAAFinggIsom<,<1AA
51 42 49 50 syl2anc φmf:1m1-1 ontoAggIsom<,<1AA
52 simpll φmf:1m1-1 ontoAgIsom<,<1AAφ
53 52 22 mpan9 φmf:1m1-1 ontoAgIsom<,<1AAiAi/kB
54 fveq2 n=jfn=fj
55 54 csbeq1d n=jfn/kB=fj/kB
56 csbcow fj/ii/kB=fj/kB
57 55 56 eqtr4di n=jfn/kB=fj/ii/kB
58 57 cbvmptv nfn/kB=jfj/ii/kB
59 eqid jgj/ii/kB=jgj/ii/kB
60 simplr φmf:1m1-1 ontoAgIsom<,<1AAm
61 2 ad2antrr φmf:1m1-1 ontoAgIsom<,<1AAM
62 27 ad2antrr φmf:1m1-1 ontoAgIsom<,<1AAAM
63 simprl φmf:1m1-1 ontoAgIsom<,<1AAf:1m1-1 ontoA
64 simprr φmf:1m1-1 ontoAgIsom<,<1AAgIsom<,<1AA
65 16 53 58 59 60 61 62 63 64 prodmolem2a φmf:1m1-1 ontoAgIsom<,<1AAseqM×kifkAB1seq1×nfn/kBm
66 65 expr φmf:1m1-1 ontoAgIsom<,<1AAseqM×kifkAB1seq1×nfn/kBm
67 66 exlimdv φmf:1m1-1 ontoAggIsom<,<1AAseqM×kifkAB1seq1×nfn/kBm
68 51 67 mpd φmf:1m1-1 ontoAseqM×kifkAB1seq1×nfn/kBm
69 breq2 x=seq1×nfn/kBmseqM×kifkAB1xseqM×kifkAB1seq1×nfn/kBm
70 68 69 syl5ibrcom φmf:1m1-1 ontoAx=seq1×nfn/kBmseqM×kifkAB1x
71 70 expimpd φmf:1m1-1 ontoAx=seq1×nfn/kBmseqM×kifkAB1x
72 71 exlimdv φmff:1m1-1 ontoAx=seq1×nfn/kBmseqM×kifkAB1x
73 72 rexlimdva φmff:1m1-1 ontoAx=seq1×nfn/kBmseqM×kifkAB1x
74 33 73 jaod φmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBmseqM×kifkAB1x
75 2 adantr φseqM×kifkAB1xM
76 4 adantr φseqM×kifkAB1xAZ
77 1 eleq2i nZnM
78 eluzelz nMn
79 78 adantl φnMn
80 uztrn znnMzM
81 80 ancoms nMznzM
82 1 eleq2i kZkM
83 1 34 eqsstri Z
84 83 sseli kZk
85 iftrue kAifkAB1=B
86 85 adantl φkAifkAB1=B
87 86 6 eqeltrd φkAifkAB1
88 87 ex φkAifkAB1
89 iffalse ¬kAifkAB1=1
90 ax-1cn 1
91 89 90 eqeltrdi ¬kAifkAB1
92 88 91 pm2.61d1 φifkAB1
93 eqid kifkAB1=kifkAB1
94 93 fvmpt2 kifkAB1kifkAB1k=ifkAB1
95 84 92 94 syl2anr φkZkifkAB1k=ifkAB1
96 5 95 eqtr4d φkZFk=kifkAB1k
97 82 96 sylan2br φkMFk=kifkAB1k
98 97 ralrimiva φkMFk=kifkAB1k
99 nffvmpt1 _kkifkAB1z
100 99 nfeq2 kFz=kifkAB1z
101 fveq2 k=zFk=Fz
102 fveq2 k=zkifkAB1k=kifkAB1z
103 101 102 eqeq12d k=zFk=kifkAB1kFz=kifkAB1z
104 100 103 rspc zMkMFk=kifkAB1kFz=kifkAB1z
105 98 104 mpan9 φzMFz=kifkAB1z
106 81 105 sylan2 φnMznFz=kifkAB1z
107 106 anassrs φnMznFz=kifkAB1z
108 79 107 seqfeq φnMseqn×F=seqn×kifkAB1
109 108 breq1d φnMseqn×Fyseqn×kifkAB1y
110 109 anbi2d φnMy0seqn×Fyy0seqn×kifkAB1y
111 110 exbidv φnMyy0seqn×Fyyy0seqn×kifkAB1y
112 77 111 sylan2b φnZyy0seqn×Fyyy0seqn×kifkAB1y
113 112 rexbidva φnZyy0seqn×FynZyy0seqn×kifkAB1y
114 3 113 mpbid φnZyy0seqn×kifkAB1y
115 114 adantr φseqM×kifkAB1xnZyy0seqn×kifkAB1y
116 simpr φseqM×kifkAB1xseqM×kifkAB1x
117 fveq2 m=Mm=M
118 117 1 eqtr4di m=Mm=Z
119 118 sseq2d m=MAmAZ
120 118 rexeqdv m=Mnmyy0seqn×kifkAB1ynZyy0seqn×kifkAB1y
121 seqeq1 m=Mseqm×kifkAB1=seqM×kifkAB1
122 121 breq1d m=Mseqm×kifkAB1xseqM×kifkAB1x
123 119 120 122 3anbi123d m=MAmnmyy0seqn×kifkAB1yseqm×kifkAB1xAZnZyy0seqn×kifkAB1yseqM×kifkAB1x
124 123 rspcev MAZnZyy0seqn×kifkAB1yseqM×kifkAB1xmAmnmyy0seqn×kifkAB1yseqm×kifkAB1x
125 75 76 115 116 124 syl13anc φseqM×kifkAB1xmAmnmyy0seqn×kifkAB1yseqm×kifkAB1x
126 125 orcd φseqM×kifkAB1xmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
127 126 ex φseqM×kifkAB1xmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
128 74 127 impbid φmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBmseqM×kifkAB1x
129 95 5 eqtr4d φkZkifkAB1k=Fk
130 82 129 sylan2br φkMkifkAB1k=Fk
131 130 ralrimiva φkMkifkAB1k=Fk
132 99 nfeq1 kkifkAB1z=Fz
133 102 101 eqeq12d k=zkifkAB1k=FkkifkAB1z=Fz
134 132 133 rspc zMkMkifkAB1k=FkkifkAB1z=Fz
135 131 134 mpan9 φzMkifkAB1z=Fz
136 2 135 seqfeq φseqM×kifkAB1=seqM×F
137 136 breq1d φseqM×kifkAB1xseqM×Fx
138 128 137 bitrd φmAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBmseqM×Fx
139 138 iotabidv φιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm=ιx|seqM×Fx
140 df-prod kAB=ιx|mAmnmyy0seqn×kifkAB1yseqm×kifkAB1xmff:1m1-1 ontoAx=seq1×nfn/kBm
141 df-fv seqM×F=ιx|seqM×Fx
142 139 140 141 3eqtr4g φkAB=seqM×F