| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnccat.1 |
⊢ ( 𝜑 → 𝑇 ∈ ( < Chain 𝐴 ) ) |
| 2 |
|
chnccat.2 |
⊢ ( 𝜑 → 𝑈 ∈ ( < Chain 𝐴 ) ) |
| 3 |
|
chnccat.3 |
⊢ ( 𝜑 → ( 𝑇 = ∅ ∨ 𝑈 = ∅ ∨ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) ) |
| 4 |
1
|
chnwrd |
⊢ ( 𝜑 → 𝑇 ∈ Word 𝐴 ) |
| 5 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝑈 ∈ Word 𝐴 ) |
| 6 |
|
ccatcl |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ) → ( 𝑇 ++ 𝑈 ) ∈ Word 𝐴 ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ++ 𝑈 ) ∈ Word 𝐴 ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑇 ) ) |
| 9 |
8 4
|
wrdfd |
⊢ ( 𝜑 → 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ 𝐴 ) |
| 10 |
9
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 11 |
10
|
difeq1d |
⊢ ( 𝜑 → ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ↔ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 14 |
|
snsspr1 |
⊢ { 0 } ⊆ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } |
| 15 |
|
sscon |
⊢ ( { 0 } ⊆ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } → ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ⊆ ( dom 𝑇 ∖ { 0 } ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ⊆ ( dom 𝑇 ∖ { 0 } ) |
| 17 |
16
|
sseli |
⊢ ( 𝑛 ∈ ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ) |
| 18 |
|
ischn |
⊢ ( 𝑇 ∈ ( < Chain 𝐴 ) ↔ ( 𝑇 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) ) |
| 19 |
1 18
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) ) |
| 20 |
19
|
simprd |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 21 |
20
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 22 |
17 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom 𝑇 ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 23 |
13 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑇 ∈ Word 𝐴 ) |
| 25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑈 ∈ Word 𝐴 ) |
| 26 |
|
sscon |
⊢ ( { 0 } ⊆ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } → ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ⊆ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) |
| 27 |
14 26
|
ax-mp |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ⊆ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) |
| 28 |
27
|
sseli |
⊢ ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) |
| 30 |
|
lencl |
⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 31 |
4 30
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 33 |
29 32
|
elfzodif0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 34 |
|
ccatval1 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( 𝑛 − 1 ) ) ) |
| 35 |
24 25 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( 𝑛 − 1 ) ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 37 |
36
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 38 |
|
ccatval1 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 39 |
24 25 37 38
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 40 |
23 35 39
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 41 |
40
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ) ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 44 |
|
noel |
⊢ ¬ 𝑛 ∈ ∅ |
| 45 |
|
fveq2 |
⊢ ( 𝑇 = ∅ → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ∅ ) ) |
| 46 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 47 |
45 46
|
eqtrdi |
⊢ ( 𝑇 = ∅ → ( ♯ ‘ 𝑇 ) = 0 ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → ( ♯ ‘ 𝑇 ) = 0 ) |
| 49 |
48
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → { ( ♯ ‘ 𝑇 ) } = { 0 } ) |
| 50 |
49
|
difeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ( { 0 } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 51 |
|
difpr |
⊢ ( { 0 } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ( ( { 0 } ∖ { 0 } ) ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 52 |
|
difid |
⊢ ( { 0 } ∖ { 0 } ) = ∅ |
| 53 |
52
|
difeq1i |
⊢ ( ( { 0 } ∖ { 0 } ) ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ( ∅ ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 54 |
|
0dif |
⊢ ( ∅ ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ∅ |
| 55 |
51 53 54
|
3eqtri |
⊢ ( { 0 } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ∅ |
| 56 |
50 55
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ∅ ) |
| 57 |
56
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ↔ 𝑛 ∈ ∅ ) ) |
| 58 |
44 57
|
mtbiri |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → ¬ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 59 |
43 58
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑇 = ∅ ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 60 |
|
eldifi |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) |
| 61 |
60
|
elsnd |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 62 |
61
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 63 |
|
vex |
⊢ 𝑛 ∈ V |
| 64 |
63
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → 𝑛 ∈ V ) |
| 65 |
|
eldifn |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 66 |
65
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 67 |
|
fveq2 |
⊢ ( 𝑈 = ∅ → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ∅ ) ) |
| 68 |
67 46
|
eqtrdi |
⊢ ( 𝑈 = ∅ → ( ♯ ‘ 𝑈 ) = 0 ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ( ♯ ‘ 𝑈 ) = 0 ) |
| 70 |
69
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) = ( ( ♯ ‘ 𝑇 ) + 0 ) ) |
| 71 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 72 |
4 30 71
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 75 |
74
|
addridd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ( ( ♯ ‘ 𝑇 ) + 0 ) = ( ♯ ‘ 𝑇 ) ) |
| 76 |
70 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 77 |
76
|
preq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } = { 0 , ( ♯ ‘ 𝑇 ) } ) |
| 78 |
66 77
|
neleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ¬ 𝑛 ∈ { 0 , ( ♯ ‘ 𝑇 ) } ) |
| 79 |
64 78
|
nelpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → 𝑛 ≠ ( ♯ ‘ 𝑇 ) ) |
| 80 |
62 79
|
pm2.21ddne |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑈 = ∅ ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) |
| 82 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑇 ∈ Word 𝐴 ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → 𝑇 ∈ Word 𝐴 ) |
| 84 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑈 ∈ Word 𝐴 ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → 𝑈 ∈ Word 𝐴 ) |
| 86 |
42
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) |
| 87 |
86
|
elsnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 88 |
87
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − 1 ) = ( ( ♯ ‘ 𝑇 ) − 1 ) ) |
| 89 |
82 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 90 |
|
sscon |
⊢ ( { 0 } ⊆ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } → ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ⊆ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 91 |
14 90
|
ax-mp |
⊢ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ⊆ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) |
| 92 |
91
|
sseli |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 93 |
61 92
|
eqeltrrd |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → ( ♯ ‘ 𝑇 ) ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 94 |
93
|
eldifbd |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → ¬ ( ♯ ‘ 𝑇 ) ∈ { 0 } ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ¬ ( ♯ ‘ 𝑇 ) ∈ { 0 } ) |
| 96 |
89 95
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ( ℕ0 ∖ { 0 } ) ) |
| 97 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
| 98 |
96 97
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℕ ) |
| 99 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 100 |
98 99
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 101 |
88 100
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 103 |
83 85 102 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( 𝑛 − 1 ) ) ) |
| 104 |
61
|
oveq1d |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → ( 𝑛 − 1 ) = ( ( ♯ ‘ 𝑇 ) − 1 ) ) |
| 105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − 1 ) = ( ( ♯ ‘ 𝑇 ) − 1 ) ) |
| 106 |
105
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 107 |
|
lsw |
⊢ ( 𝑇 ∈ Word 𝐴 → ( lastS ‘ 𝑇 ) = ( 𝑇 ‘ ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 108 |
82 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( lastS ‘ 𝑇 ) = ( 𝑇 ‘ ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 109 |
106 108
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) = ( lastS ‘ 𝑇 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) = ( lastS ‘ 𝑇 ) ) |
| 111 |
103 110
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) = ( lastS ‘ 𝑇 ) ) |
| 112 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 113 |
112
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) = ( ( 𝑇 ++ 𝑈 ) ‘ ( ♯ ‘ 𝑇 ) ) ) |
| 114 |
|
lencl |
⊢ ( 𝑈 ∈ Word 𝐴 → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
| 115 |
5 114
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
| 116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
| 117 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( ♯ ‘ 𝑈 ) = 0 ) → 𝑇 ∈ Word 𝐴 ) |
| 118 |
117 30 71
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 119 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ♯ ‘ 𝑈 ) = 0 ) |
| 120 |
118 119
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) ) |
| 121 |
|
prid2g |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℂ → ( ♯ ‘ 𝑇 ) ∈ { 0 , ( ♯ ‘ 𝑇 ) } ) |
| 122 |
121
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ♯ ‘ 𝑇 ) ∈ { 0 , ( ♯ ‘ 𝑇 ) } ) |
| 123 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ♯ ‘ 𝑈 ) = 0 ) |
| 124 |
123
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) = ( ( ♯ ‘ 𝑇 ) + 0 ) ) |
| 125 |
|
addrid |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℂ → ( ( ♯ ‘ 𝑇 ) + 0 ) = ( ♯ ‘ 𝑇 ) ) |
| 126 |
125
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ( ♯ ‘ 𝑇 ) + 0 ) = ( ♯ ‘ 𝑇 ) ) |
| 127 |
124 126
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 128 |
127
|
preq2d |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } = { 0 , ( ♯ ‘ 𝑇 ) } ) |
| 129 |
122 128
|
eleqtrrd |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( ♯ ‘ 𝑇 ) ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 130 |
129
|
snssd |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → { ( ♯ ‘ 𝑇 ) } ⊆ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 131 |
|
ssdif0 |
⊢ ( { ( ♯ ‘ 𝑇 ) } ⊆ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ↔ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ∅ ) |
| 132 |
130 131
|
sylib |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ∅ ) |
| 133 |
|
nel02 |
⊢ ( ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ∅ → ¬ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 134 |
120 132 133
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( ♯ ‘ 𝑈 ) = 0 ) → ¬ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 135 |
134
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( ♯ ‘ 𝑈 ) = 0 → ¬ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 136 |
42 135
|
mt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ¬ ( ♯ ‘ 𝑈 ) = 0 ) |
| 137 |
136
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑈 ) ≠ 0 ) |
| 138 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑈 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑈 ) ≠ 0 ) ) |
| 139 |
116 137 138
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 140 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 141 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ↔ ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
| 142 |
140 141
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 143 |
|
addlid |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℂ → ( 0 + ( ♯ ‘ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 144 |
143
|
eqcomd |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℂ → ( ♯ ‘ 𝑇 ) = ( 0 + ( ♯ ‘ 𝑇 ) ) ) |
| 145 |
144
|
fveq2d |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℂ → ( ( 𝑇 ++ 𝑈 ) ‘ ( ♯ ‘ 𝑇 ) ) = ( ( 𝑇 ++ 𝑈 ) ‘ ( 0 + ( ♯ ‘ 𝑇 ) ) ) ) |
| 146 |
30 71 145
|
3syl |
⊢ ( 𝑇 ∈ Word 𝐴 → ( ( 𝑇 ++ 𝑈 ) ‘ ( ♯ ‘ 𝑇 ) ) = ( ( 𝑇 ++ 𝑈 ) ‘ ( 0 + ( ♯ ‘ 𝑇 ) ) ) ) |
| 147 |
146
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( ♯ ‘ 𝑇 ) ) = ( ( 𝑇 ++ 𝑈 ) ‘ ( 0 + ( ♯ ‘ 𝑇 ) ) ) ) |
| 148 |
|
ccatval3 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 0 + ( ♯ ‘ 𝑇 ) ) ) = ( 𝑈 ‘ 0 ) ) |
| 149 |
147 148
|
eqtrd |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( ♯ ‘ 𝑇 ) ) = ( 𝑈 ‘ 0 ) ) |
| 150 |
83 85 142 149
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( ♯ ‘ 𝑇 ) ) = ( 𝑈 ‘ 0 ) ) |
| 151 |
113 150
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) = ( 𝑈 ‘ 0 ) ) |
| 152 |
81 111 151
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 153 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑇 = ∅ ∨ 𝑈 = ∅ ∨ ( lastS ‘ 𝑇 ) < ( 𝑈 ‘ 0 ) ) ) |
| 154 |
59 80 152 153
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 155 |
154
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ) ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 156 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 157 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) |
| 158 |
157
|
eldifad |
⊢ ( 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 159 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) → 𝑛 ∈ ℤ ) |
| 160 |
158 159
|
syl |
⊢ ( 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) → 𝑛 ∈ ℤ ) |
| 161 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
| 162 |
156 160 161
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ℂ ) |
| 163 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 1 ∈ ℂ ) |
| 164 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 165 |
162 163 164
|
sub32d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑛 − 1 ) − ( ♯ ‘ 𝑇 ) ) = ( ( 𝑛 − ( ♯ ‘ 𝑇 ) ) − 1 ) ) |
| 166 |
165
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑈 ‘ ( ( 𝑛 − 1 ) − ( ♯ ‘ 𝑇 ) ) ) = ( 𝑈 ‘ ( ( 𝑛 − ( ♯ ‘ 𝑇 ) ) − 1 ) ) ) |
| 167 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑈 ∈ ( < Chain 𝐴 ) ) |
| 168 |
158
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 169 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑈 ) ∈ ℕ0 → ( ♯ ‘ 𝑈 ) ∈ ℤ ) |
| 170 |
5 114 169
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℤ ) |
| 171 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ♯ ‘ 𝑈 ) ∈ ℤ ) |
| 172 |
|
fzosubel3 |
⊢ ( ( 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ( ♯ ‘ 𝑈 ) ∈ ℤ ) → ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 173 |
168 171 172
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 174 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝜑 ) |
| 175 |
156
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) |
| 176 |
174 175
|
jca |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) ) |
| 177 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 178 |
177 159 161
|
3syl |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → 𝑛 ∈ ℂ ) |
| 179 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → 𝑛 ∈ ℂ ) |
| 180 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 181 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → 𝑛 ≠ ( ♯ ‘ 𝑇 ) ) |
| 182 |
181
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → 𝑛 ≠ ( ♯ ‘ 𝑇 ) ) |
| 183 |
179 180 182
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ≠ 0 ) |
| 184 |
|
nelsn |
⊢ ( ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ≠ 0 → ¬ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ { 0 } ) |
| 185 |
176 183 184
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ¬ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ { 0 } ) |
| 186 |
173 185
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ∖ { 0 } ) ) |
| 187 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑈 ) ) |
| 188 |
187 5
|
wrdfd |
⊢ ( 𝜑 → 𝑈 : ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ⟶ 𝐴 ) |
| 189 |
188
|
fdmd |
⊢ ( 𝜑 → dom 𝑈 = ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
| 190 |
189
|
difeq1d |
⊢ ( 𝜑 → ( dom 𝑈 ∖ { 0 } ) = ( ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ∖ { 0 } ) ) |
| 191 |
190
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( dom 𝑈 ∖ { 0 } ) ↔ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ∖ { 0 } ) ) ) |
| 192 |
191
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ∖ { 0 } ) ) → ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( dom 𝑈 ∖ { 0 } ) ) |
| 193 |
186 192
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ∈ ( dom 𝑈 ∖ { 0 } ) ) |
| 194 |
167 193
|
chnltm1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑈 ‘ ( ( 𝑛 − ( ♯ ‘ 𝑇 ) ) − 1 ) ) < ( 𝑈 ‘ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ) ) |
| 195 |
166 194
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑈 ‘ ( ( 𝑛 − 1 ) − ( ♯ ‘ 𝑇 ) ) ) < ( 𝑈 ‘ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ) ) |
| 196 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑇 ∈ Word 𝐴 ) |
| 197 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → 𝑈 ∈ Word 𝐴 ) |
| 198 |
177 159
|
syl |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → 𝑛 ∈ ℤ ) |
| 199 |
198
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → 𝑛 ∈ ℤ ) |
| 200 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 201 |
4 30 200
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 202 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 203 |
199 202
|
jca |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) |
| 204 |
|
elfzole1 |
⊢ ( 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ 𝑇 ) ≤ 𝑛 ) |
| 205 |
177 204
|
syl |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → ( ♯ ‘ 𝑇 ) ≤ 𝑛 ) |
| 206 |
205
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ♯ ‘ 𝑇 ) ≤ 𝑛 ) |
| 207 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) |
| 208 |
|
velsn |
⊢ ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ↔ 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 209 |
208
|
biimpri |
⊢ ( 𝑛 = ( ♯ ‘ 𝑇 ) → 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) |
| 210 |
209
|
necon3bi |
⊢ ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → 𝑛 ≠ ( ♯ ‘ 𝑇 ) ) |
| 211 |
210
|
necomd |
⊢ ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) |
| 212 |
207 211
|
syl |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) |
| 213 |
212
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) |
| 214 |
|
simp1r |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
| 215 |
214
|
zred |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
| 216 |
|
simp1l |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → 𝑛 ∈ ℤ ) |
| 217 |
216
|
zred |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → 𝑛 ∈ ℝ ) |
| 218 |
|
simp2 |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ♯ ‘ 𝑇 ) ≤ 𝑛 ) |
| 219 |
|
simp3 |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) |
| 220 |
219
|
necomd |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → 𝑛 ≠ ( ♯ ‘ 𝑇 ) ) |
| 221 |
215 217 218 220
|
leneltd |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ♯ ‘ 𝑇 ) < 𝑛 ) |
| 222 |
|
simp1 |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) |
| 223 |
222
|
ancomd |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ♯ ‘ 𝑇 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 224 |
|
zltp1le |
⊢ ( ( ( ♯ ‘ 𝑇 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ♯ ‘ 𝑇 ) < 𝑛 ↔ ( ( ♯ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) ) |
| 225 |
223 224
|
syl |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ♯ ‘ 𝑇 ) < 𝑛 ↔ ( ( ♯ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) ) |
| 226 |
221 225
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ♯ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) |
| 227 |
|
peano2re |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℝ → ( ( ♯ ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 228 |
215 227
|
syl |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ♯ ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 229 |
|
1red |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → 1 ∈ ℝ ) |
| 230 |
228 217 229
|
lesub1d |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ( ♯ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ↔ ( ( ( ♯ ‘ 𝑇 ) + 1 ) − 1 ) ≤ ( 𝑛 − 1 ) ) ) |
| 231 |
|
zcn |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℤ → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 232 |
|
1cnd |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℤ → 1 ∈ ℂ ) |
| 233 |
231 232
|
pncand |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℤ → ( ( ( ♯ ‘ 𝑇 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑇 ) ) |
| 234 |
233
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) → ( ( ( ♯ ‘ 𝑇 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑇 ) ) |
| 235 |
234
|
3ad2ant1 |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ( ♯ ‘ 𝑇 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑇 ) ) |
| 236 |
235
|
breq1d |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ( ( ♯ ‘ 𝑇 ) + 1 ) − 1 ) ≤ ( 𝑛 − 1 ) ↔ ( ♯ ‘ 𝑇 ) ≤ ( 𝑛 − 1 ) ) ) |
| 237 |
230 236
|
bitrd |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ( ( ♯ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ↔ ( ♯ ‘ 𝑇 ) ≤ ( 𝑛 − 1 ) ) ) |
| 238 |
226 237
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ∧ ( ♯ ‘ 𝑇 ) ≤ 𝑛 ∧ ( ♯ ‘ 𝑇 ) ≠ 𝑛 ) → ( ♯ ‘ 𝑇 ) ≤ ( 𝑛 − 1 ) ) |
| 239 |
203 206 213 238
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ♯ ‘ 𝑇 ) ≤ ( 𝑛 − 1 ) ) |
| 240 |
199
|
zred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → 𝑛 ∈ ℝ ) |
| 241 |
|
peano2rem |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ ) |
| 242 |
240 241
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
| 243 |
201 170
|
zaddcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ℤ ) |
| 244 |
243
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ℤ ) |
| 245 |
244
|
zred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ℝ ) |
| 246 |
240
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 − 1 ) < 𝑛 ) |
| 247 |
|
elfzolt2 |
⊢ ( 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) → 𝑛 < ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 248 |
177 247
|
syl |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) → 𝑛 < ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 249 |
248
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → 𝑛 < ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 250 |
242 240 245 246 249
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 − 1 ) < ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 251 |
|
peano2zm |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 − 1 ) ∈ ℤ ) |
| 252 |
199 251
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 − 1 ) ∈ ℤ ) |
| 253 |
|
elfzo |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℤ ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ℤ ) → ( ( 𝑛 − 1 ) ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ↔ ( ( ♯ ‘ 𝑇 ) ≤ ( 𝑛 − 1 ) ∧ ( 𝑛 − 1 ) < ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 254 |
252 202 244 253
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( ( 𝑛 − 1 ) ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ↔ ( ( ♯ ‘ 𝑇 ) ≤ ( 𝑛 − 1 ) ∧ ( 𝑛 − 1 ) < ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 255 |
239 250 254
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) → ( 𝑛 − 1 ) ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 256 |
157 255
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 − 1 ) ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 257 |
|
ccatval2 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ ( 𝑛 − 1 ) ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑈 ‘ ( ( 𝑛 − 1 ) − ( ♯ ‘ 𝑇 ) ) ) ) |
| 258 |
196 197 256 257
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑈 ‘ ( ( 𝑛 − 1 ) − ( ♯ ‘ 𝑇 ) ) ) ) |
| 259 |
|
ccatval2 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) = ( 𝑈 ‘ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ) ) |
| 260 |
196 197 168 259
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) = ( 𝑈 ‘ ( 𝑛 − ( ♯ ‘ 𝑇 ) ) ) ) |
| 261 |
195 258 260
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 262 |
261
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ) ∧ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 263 |
|
ccatlen |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑈 ∈ Word 𝐴 ) → ( ♯ ‘ ( 𝑇 ++ 𝑈 ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 264 |
4 5 263
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑇 ++ 𝑈 ) ) = ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 265 |
264
|
eqcomd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) = ( ♯ ‘ ( 𝑇 ++ 𝑈 ) ) ) |
| 266 |
265 7
|
wrdfd |
⊢ ( 𝜑 → ( 𝑇 ++ 𝑈 ) : ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ⟶ 𝐴 ) |
| 267 |
266
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑇 ++ 𝑈 ) = ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 268 |
267
|
difeq1d |
⊢ ( 𝜑 → ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ) |
| 269 |
|
fzonel |
⊢ ¬ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) |
| 270 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ) |
| 271 |
270
|
eldifad |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 272 |
271
|
ex |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) → ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 273 |
269 272
|
mtoi |
⊢ ( 𝜑 → ¬ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ) |
| 274 |
|
difsn |
⊢ ( ¬ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) → ( ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ) |
| 275 |
274
|
eqcomd |
⊢ ( ¬ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) → ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) = ( ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 276 |
273 275
|
syl |
⊢ ( 𝜑 → ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) = ( ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 277 |
|
difpr |
⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) = ( ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) ∖ { ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 278 |
276 277
|
eqtr4di |
⊢ ( 𝜑 → ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 } ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 279 |
268 278
|
eqtrd |
⊢ ( 𝜑 → ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) = ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 280 |
279
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ↔ 𝑛 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 281 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ↔ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 282 |
280 281
|
bitrdi |
⊢ ( 𝜑 → ( 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ↔ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 283 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 284 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 285 |
283 284
|
eldifd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 286 |
285
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) ) |
| 287 |
|
exmidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ∨ ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) ) |
| 288 |
|
idd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) ) |
| 289 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) |
| 290 |
288 289
|
jctird |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 291 |
|
eldif |
⊢ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ↔ ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 292 |
290 291
|
imbitrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 293 |
|
idd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) ) |
| 294 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) |
| 295 |
293 294
|
jctild |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → ( 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) ) ) |
| 296 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ↔ ( 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) ) |
| 297 |
295 296
|
imbitrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ) ) |
| 298 |
297 289
|
jctird |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 299 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ↔ ( 𝑛 ∈ ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) |
| 300 |
298 299
|
imbitrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } → 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 301 |
292 300
|
orim12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( ( 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ∨ ¬ 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) → ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) ) |
| 302 |
287 301
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 303 |
302
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ∧ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) ) |
| 304 |
201
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) → ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) |
| 305 |
304
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) ) |
| 306 |
|
fzospliti |
⊢ ( ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ) → ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∨ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 307 |
305 306
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∨ 𝑛 ∈ ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 308 |
286 303 307
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∧ ¬ 𝑛 ∈ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) → ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) ) |
| 309 |
282 308
|
sylbida |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ) → ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) ) |
| 310 |
|
3orass |
⊢ ( ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ↔ ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) ) |
| 311 |
309 310
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ) → ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ∨ 𝑛 ∈ ( ( ( ( ♯ ‘ 𝑇 ) ..^ ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) ) ∖ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 , ( ( ♯ ‘ 𝑇 ) + ( ♯ ‘ 𝑈 ) ) } ) ) ) |
| 312 |
41 155 262 311
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ) → ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 313 |
312
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) |
| 314 |
|
ischn |
⊢ ( ( 𝑇 ++ 𝑈 ) ∈ ( < Chain 𝐴 ) ↔ ( ( 𝑇 ++ 𝑈 ) ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom ( 𝑇 ++ 𝑈 ) ∖ { 0 } ) ( ( 𝑇 ++ 𝑈 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 𝑈 ) ‘ 𝑛 ) ) ) |
| 315 |
7 313 314
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑇 ++ 𝑈 ) ∈ ( < Chain 𝐴 ) ) |