| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmdv.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ulmdv.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 3 |
|
ulmdv.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
ulmdv.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 5 |
|
ulmdv.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
| 6 |
|
ulmdv.l |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 7 |
|
ulmdv.u |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) |
| 8 |
|
ulmdvlem1.c |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ 𝑋 ) |
| 9 |
|
ulmdvlem1.r |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 ∈ ℝ+ ) |
| 10 |
|
ulmdvlem1.u |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ+ ) |
| 11 |
|
ulmdvlem1.v |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ ℝ+ ) |
| 12 |
|
ulmdvlem1.l |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 < 𝑊 ) |
| 13 |
|
ulmdvlem1.b |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ 𝑋 ) |
| 14 |
|
ulmdvlem1.a |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑈 ) |
| 15 |
|
ulmdvlem1.n |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ 𝑍 ) |
| 16 |
|
ulmdvlem1.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 17 |
|
ulmdvlem1.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) − ( 𝐻 ‘ 𝐶 ) ) ) < ( 𝑅 / 2 ) ) |
| 18 |
|
ulmdvlem1.y |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ 𝑋 ) |
| 19 |
|
ulmdvlem1.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ≠ 𝐶 ) |
| 20 |
|
ulmdvlem1.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑊 → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
| 22 |
21 18
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ 𝑌 ) ∈ ℂ ) |
| 23 |
21 8
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 24 |
22 23
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 25 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ) |
| 27 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) |
| 28 |
|
ovex |
⊢ ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ∈ V |
| 29 |
26 27 28
|
fvmpt |
⊢ ( 𝑁 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑁 ) = ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ) |
| 30 |
15 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑁 ) = ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ) |
| 31 |
|
ovex |
⊢ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 32 |
31
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 33 |
27
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 34 |
32 33
|
mp1i |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 35 |
|
ulmf2 |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ∧ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 36 |
34 7 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 38 |
37 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑁 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 39 |
30 38
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 40 |
|
elmapi |
⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 42 |
41
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → dom ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) = 𝑋 ) |
| 43 |
|
dvbsss |
⊢ dom ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ⊆ 𝑆 |
| 44 |
42 43
|
eqsstrrdi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ⊆ 𝑆 ) |
| 45 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 46 |
2 45
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑆 ⊆ ℂ ) |
| 48 |
44 47
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑋 ⊆ ℂ ) |
| 49 |
48 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ ℂ ) |
| 50 |
48 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ ℂ ) |
| 51 |
49 50
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 − 𝐶 ) ∈ ℂ ) |
| 52 |
49 50 19
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 − 𝐶 ) ≠ 0 ) |
| 53 |
24 51 52
|
divcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ∈ ℂ ) |
| 54 |
|
ulmcl |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 → 𝐻 : 𝑋 ⟶ ℂ ) |
| 55 |
7 54
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝑋 ⟶ ℂ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐻 : 𝑋 ⟶ ℂ ) |
| 57 |
56 8
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐻 ‘ 𝐶 ) ∈ ℂ ) |
| 58 |
41 8
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ∈ ℂ ) |
| 59 |
9
|
rpred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑅 ∈ ℝ ) |
| 60 |
53 58
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 61 |
60
|
abscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 62 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 63 |
62 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐹 ‘ 𝑁 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 64 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑁 ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝐹 ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐹 ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) |
| 66 |
65 18
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ∈ ℂ ) |
| 67 |
65 8
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ∈ ℂ ) |
| 68 |
66 67
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 69 |
68 51 52
|
divcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ∈ ℂ ) |
| 70 |
53 69
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ∈ ℂ ) |
| 71 |
70
|
abscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) ∈ ℝ ) |
| 72 |
69 58
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 73 |
72
|
abscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 74 |
71 73
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 75 |
59
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 / 2 ) ∈ ℝ ) |
| 76 |
53 58 69
|
abs3difd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ≤ ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) ) |
| 77 |
75
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑅 / 2 ) / 2 ) ∈ ℝ ) |
| 78 |
22 66 23 67
|
sub4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) = ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) − ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 79 |
78
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) = ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) − ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) ) |
| 80 |
24 68 51 52
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) − ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) = ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) |
| 81 |
79 80
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) = ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) ) |
| 83 |
22 66
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ∈ ℂ ) |
| 84 |
23 67
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 85 |
83 84
|
subcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 86 |
85 51 52
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) / ( 𝑌 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 87 |
82 86
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) = ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 88 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 89 |
15 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 90 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ℤ ) |
| 92 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℤ ) |
| 93 |
|
fveq2 |
⊢ ( 𝑧 = 𝑌 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) |
| 94 |
93
|
mpteq2dv |
⊢ ( 𝑧 = 𝑌 → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑧 = 𝑌 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑌 ) ) |
| 96 |
94 95
|
breq12d |
⊢ ( 𝑧 = 𝑌 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ⇝ ( 𝐺 ‘ 𝑌 ) ) ) |
| 97 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 99 |
96 98 18
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ⇝ ( 𝐺 ‘ 𝑌 ) ) |
| 100 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
| 101 |
100
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ∈ V |
| 102 |
101
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ∈ V ) |
| 103 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 104 |
103
|
fveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ) |
| 105 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) |
| 106 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ∈ V |
| 107 |
104 105 106
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ) |
| 108 |
107
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ) |
| 109 |
62
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 110 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝐹 ‘ 𝑛 ) : 𝑋 ⟶ ℂ ) |
| 111 |
109 110
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑋 ⟶ ℂ ) |
| 112 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑌 ∈ 𝑋 ) |
| 113 |
111 112
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) ∈ ℂ ) |
| 114 |
108 113
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 115 |
104
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 116 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 117 |
|
ovex |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ∈ V |
| 118 |
115 116 117
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 120 |
108
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 121 |
119 120
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 122 |
1 92 99 66 102 114 121
|
climsubc1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ⇝ ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 123 |
100
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ V |
| 124 |
123
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ V ) |
| 125 |
|
fveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) |
| 126 |
125
|
mpteq2dv |
⊢ ( 𝑧 = 𝐶 → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ) |
| 127 |
|
fveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) |
| 128 |
126 127
|
breq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ⇝ ( 𝐺 ‘ 𝐶 ) ) ) |
| 129 |
128 98 8
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ⇝ ( 𝐺 ‘ 𝐶 ) ) |
| 130 |
100
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ V |
| 131 |
130
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ V ) |
| 132 |
103
|
fveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ) |
| 133 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) |
| 134 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ∈ V |
| 135 |
132 133 134
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ) |
| 136 |
135
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ) |
| 137 |
8
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐶 ∈ 𝑋 ) |
| 138 |
111 137
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) ∈ ℂ ) |
| 139 |
136 138
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 140 |
132
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 141 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 142 |
|
ovex |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ V |
| 143 |
140 141 142
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 144 |
143
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 145 |
136
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 146 |
144 145
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 147 |
1 92 129 67 131 139 146
|
climsubc1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ⇝ ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 148 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ∈ ℂ ) |
| 149 |
113 148
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ∈ ℂ ) |
| 150 |
119 149
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 151 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ∈ ℂ ) |
| 152 |
138 151
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 153 |
144 152
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 154 |
115 140
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 155 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 156 |
|
ovex |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ V |
| 157 |
154 155 156
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 158 |
157
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 159 |
119 144
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 160 |
158 159
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ‘ 𝑛 ) ) ) |
| 161 |
1 92 122 124 147 150 153 160
|
climsub |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ⇝ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 162 |
100
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ∈ V |
| 163 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ∈ V ) |
| 164 |
149 152
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 165 |
158 164
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 166 |
154
|
fveq2d |
⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 167 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 168 |
|
fvex |
⊢ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ V |
| 169 |
166 167 168
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 170 |
169
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 171 |
158
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 172 |
170 171
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ‘ 𝑛 ) ) ) |
| 173 |
1 161 163 92 165 172
|
climabs |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ⇝ ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 174 |
51
|
abscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) ∈ ℝ ) |
| 175 |
77 174
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℝ ) |
| 176 |
175
|
recnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℂ ) |
| 177 |
1
|
eqimss2i |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
| 178 |
177 100
|
climconst2 |
⊢ ( ( ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ⇝ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 179 |
176 92 178
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ⇝ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 180 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 181 |
15 180
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 182 |
181 169
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 183 |
164
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 184 |
181 183
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 185 |
182 184
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 186 |
|
ovex |
⊢ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ V |
| 187 |
186
|
fvconst2 |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) = ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 188 |
181 187
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) = ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 189 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ∈ ℝ ) |
| 190 |
188 189
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) ∈ ℝ ) |
| 191 |
181 111
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) : 𝑋 ⟶ ℂ ) |
| 192 |
191
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) Fn 𝑋 ) |
| 193 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) : 𝑋 ⟶ ℂ ) |
| 194 |
193
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) Fn 𝑋 ) |
| 195 |
|
ulmscl |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 → 𝑋 ∈ V ) |
| 196 |
7 195
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 197 |
196
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑋 ∈ V ) |
| 198 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑌 ∈ 𝑋 ) |
| 199 |
|
fnfvof |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) Fn 𝑋 ∧ ( 𝐹 ‘ 𝑁 ) Fn 𝑋 ) ∧ ( 𝑋 ∈ V ∧ 𝑌 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 200 |
192 194 197 198 199
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 201 |
8
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ 𝑋 ) |
| 202 |
|
fnfvof |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) Fn 𝑋 ∧ ( 𝐹 ‘ 𝑁 ) Fn 𝑋 ) ∧ ( 𝑋 ∈ V ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 203 |
192 194 197 201 202
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
| 204 |
200 203
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) = ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
| 205 |
204
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) |
| 206 |
44 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ 𝑆 ) |
| 207 |
44 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ 𝑆 ) |
| 208 |
206 207
|
ovresd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) = ( 𝑌 ( abs ∘ − ) 𝐶 ) ) |
| 209 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 210 |
209
|
cnmetdval |
⊢ ( ( 𝑌 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑌 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑌 − 𝐶 ) ) ) |
| 211 |
49 50 210
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑌 − 𝐶 ) ) ) |
| 212 |
208 211
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) = ( abs ‘ ( 𝑌 − 𝐶 ) ) ) |
| 213 |
212 14
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) < 𝑈 ) |
| 214 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 215 |
|
xmetres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ) |
| 216 |
214 47 215
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ) |
| 217 |
10
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ* ) |
| 218 |
|
elbl3 |
⊢ ( ( ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ∧ 𝑈 ∈ ℝ* ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ↔ ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) < 𝑈 ) ) |
| 219 |
216 217 207 206 218
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ↔ ( 𝑌 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝐶 ) < 𝑈 ) ) |
| 220 |
213 219
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 221 |
220
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 222 |
|
blcntr |
⊢ ( ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ∧ 𝑈 ∈ ℝ+ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 223 |
216 207 10 222
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 224 |
223
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) |
| 225 |
221 224
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ∧ 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) ) |
| 226 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 227 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) |
| 228 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑋 ⊆ 𝑆 ) |
| 229 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ V ) |
| 230 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ∈ V ) |
| 231 |
191
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 232 |
193
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 233 |
197 229 230 231 232
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) |
| 234 |
191
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 235 |
193
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ∈ ℂ ) |
| 236 |
234 235
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 237 |
233 236
|
fmpt3d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 238 |
207
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ 𝑆 ) |
| 239 |
217
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑈 ∈ ℝ* ) |
| 240 |
|
eqid |
⊢ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) = ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) |
| 241 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ 𝑋 ) |
| 242 |
233
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) ) |
| 243 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ∈ V ) |
| 244 |
231
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
| 245 |
103
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 246 |
|
ovex |
⊢ ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ∈ V |
| 247 |
245 27 246
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 248 |
181 247
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 249 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 250 |
249 181
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 251 |
248 250
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 252 |
|
elmapi |
⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) : 𝑋 ⟶ ℂ ) |
| 253 |
251 252
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) : 𝑋 ⟶ ℂ ) |
| 254 |
253
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 255 |
244 254
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 256 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ∈ V ) |
| 257 |
232
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) |
| 258 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) : 𝑋 ⟶ ℂ ) |
| 259 |
258
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 260 |
257 259
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 261 |
226 234 243 255 235 256 260
|
dvmptsub |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 262 |
242 261
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 263 |
262
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = dom ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 264 |
|
ovex |
⊢ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ V |
| 265 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 266 |
264 265
|
dmmpti |
⊢ dom ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) = 𝑋 |
| 267 |
263 266
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → dom ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) = 𝑋 ) |
| 268 |
241 267
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ⊆ dom ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 269 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑅 / 2 ) / 2 ) ∈ ℝ ) |
| 270 |
241
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) → 𝑦 ∈ 𝑋 ) |
| 271 |
262
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ‘ 𝑦 ) ) |
| 272 |
265
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 273 |
264 272
|
mpan2 |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑦 ∈ 𝑋 ↦ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 274 |
271 273
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) |
| 275 |
274
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ) |
| 276 |
264
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ V ) |
| 277 |
226 236 276 261
|
dvmptcl |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 278 |
277
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 279 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑅 / 2 ) / 2 ) ∈ ℝ ) |
| 280 |
253
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 281 |
258
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 282 |
280 281
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) ) |
| 283 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 284 |
283
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) = ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ) |
| 285 |
284
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) = ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) |
| 286 |
285
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) |
| 287 |
286
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) ) |
| 288 |
287
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ↔ ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 289 |
288
|
ralbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ↔ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 290 |
289
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 291 |
16 290
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 292 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) = ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) |
| 293 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) = ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) |
| 294 |
292 293
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 295 |
294
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) ) |
| 296 |
295
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ↔ ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 297 |
296
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑥 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑥 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 298 |
291 297
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 299 |
282 298
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 300 |
278 279 299
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝑆 D ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑦 ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑦 ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 301 |
275 300
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 302 |
270 301
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) → ( abs ‘ ( ( 𝑆 D ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ) ‘ 𝑦 ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 303 |
226 227 228 237 238 239 240 268 269 302
|
dvlip2 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑌 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ∧ 𝐶 ∈ ( 𝐶 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) 𝑈 ) ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 304 |
225 303
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝑌 ) − ( ( ( 𝐹 ‘ 𝑛 ) ∘f − ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 305 |
205 304
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 306 |
305 182 188
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( abs ‘ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ) ‘ 𝑛 ) ≤ ( ( 𝑍 × { ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) } ) ‘ 𝑛 ) ) |
| 307 |
88 91 173 179 185 190 306
|
climle |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) |
| 308 |
85
|
abscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 309 |
51 52
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) ∈ ℝ+ ) |
| 310 |
308 77 309
|
ledivmul2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ↔ ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) ≤ ( ( ( 𝑅 / 2 ) / 2 ) · ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ) ) |
| 311 |
307 310
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) ) − ( ( 𝐺 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) / ( abs ‘ ( 𝑌 − 𝐶 ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 312 |
87 311
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) ≤ ( ( 𝑅 / 2 ) / 2 ) ) |
| 313 |
10
|
rpred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑈 ∈ ℝ ) |
| 314 |
11
|
rpred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ ℝ ) |
| 315 |
174 313 314 14 12
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑊 ) |
| 316 |
315 20
|
mpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( ( 𝑅 / 2 ) / 2 ) ) |
| 317 |
71 73 77 77 312 316
|
leltaddd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) < ( ( ( 𝑅 / 2 ) / 2 ) + ( ( 𝑅 / 2 ) / 2 ) ) ) |
| 318 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑅 / 2 ) ∈ ℂ ) |
| 319 |
318
|
2halvesd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑅 / 2 ) / 2 ) + ( ( 𝑅 / 2 ) / 2 ) ) = ( 𝑅 / 2 ) ) |
| 320 |
317 319
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) ) ) + ( abs ‘ ( ( ( ( ( 𝐹 ‘ 𝑁 ) ‘ 𝑌 ) − ( ( 𝐹 ‘ 𝑁 ) ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) ) < ( 𝑅 / 2 ) ) |
| 321 |
61 74 75 76 320
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( ( 𝑆 D ( 𝐹 ‘ 𝑁 ) ) ‘ 𝐶 ) ) ) < ( 𝑅 / 2 ) ) |
| 322 |
53 57 58 59 321 17
|
abs3lemd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑌 − 𝐶 ) ) − ( 𝐻 ‘ 𝐶 ) ) ) < 𝑅 ) |