Metamath Proof Explorer


Theorem aks4d1p3

Description: There exists a small enough number such that it does not divide A . (Contributed by metakunt, 27-Oct-2024)

Ref Expression
Hypotheses aks4d1p3.1 φN3
aks4d1p3.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p3.3 B=log2N5
Assertion aks4d1p3 φr1B¬rA

Proof

Step Hyp Ref Expression
1 aks4d1p3.1 φN3
2 aks4d1p3.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p3.3 B=log2N5
4 1 2 3 aks4d1p1 φA<2B
5 4 adantr φr1BrAA<2B
6 2re 2
7 6 a1i φ2
8 3 a1i φB=log2N5
9 2pos 0<2
10 9 a1i φ0<2
11 eluzelz N3N
12 1 11 syl φN
13 12 zred φN
14 0red φ0
15 3re 3
16 15 a1i φ3
17 3pos 0<3
18 17 a1i φ0<3
19 eluzle N33N
20 1 19 syl φ3N
21 14 16 13 18 20 ltletrd φ0<N
22 1red φ1
23 1lt2 1<2
24 23 a1i φ1<2
25 22 24 ltned φ12
26 25 necomd φ21
27 7 10 13 21 26 relogbcld φlog2N
28 5nn0 50
29 28 a1i φ50
30 27 29 reexpcld φlog2N5
31 ceilcl log2N5log2N5
32 30 31 syl φlog2N5
33 8 32 eqeltrd φB
34 32 zred φlog2N5
35 8 34 eqeltrd φB
36 7re 7
37 36 a1i φ7
38 7pos 0<7
39 38 a1i φ0<7
40 13 20 3lexlogpow5ineq3 φ7<log2N5
41 14 37 30 39 40 lttrd φ0<log2N5
42 ceilge log2N5log2N5log2N5
43 30 42 syl φlog2N5log2N5
44 14 30 34 41 43 ltletrd φ0<log2N5
45 44 8 breqtrrd φ0<B
46 14 35 45 ltled φ0B
47 33 46 jca φB0B
48 elnn0z B0B0B
49 47 48 sylibr φB0
50 7 49 reexpcld φ2B
51 50 adantr φr1BrA2B
52 elfznn q1Bq
53 52 adantl φq1Bq
54 53 nnzd φq1Bq
55 54 ex φq1Bq
56 55 ssrdv φ1B
57 fzfid φ1BFin
58 lcmfcl 1B1BFinlcm_1B0
59 56 57 58 syl2anc φlcm_1B0
60 59 nn0red φlcm_1B
61 60 adantr φr1BrAlcm_1B
62 2 a1i φA=Nlog2Bk=1log2N2Nk1
63 elnnz NN0<N
64 12 21 63 sylanbrc φN
65 7 10 35 45 26 relogbcld φlog2B
66 65 flcld φlog2B
67 7 10 7 10 26 relogbcld φlog22
68 0le1 01
69 68 a1i φ01
70 7 recnd φ2
71 14 10 gtned φ20
72 logbid1 22021log22=1
73 70 71 26 72 syl3anc φlog22=1
74 73 eqcomd φ1=log22
75 69 74 breqtrd φ0log22
76 2z 2
77 76 a1i φ2
78 7 leidd φ22
79 2lt7 2<7
80 79 a1i φ2<7
81 7 37 80 ltled φ27
82 37 30 34 40 43 ltletrd φ7<log2N5
83 82 8 breqtrrd φ7<B
84 37 35 83 ltled φ7B
85 7 37 35 81 84 letrd φ2B
86 77 78 7 10 35 45 85 logblebd φlog22log2B
87 14 67 65 75 86 letrd φ0log2B
88 0zd φ0
89 flge log2B00log2B0log2B
90 65 88 89 syl2anc φ0log2B0log2B
91 87 90 mpbid φ0log2B
92 66 91 jca φlog2B0log2B
93 elnn0z log2B0log2B0log2B
94 92 93 sylibr φlog2B0
95 64 94 nnexpcld φNlog2B
96 fzfid φ1log2N2Fin
97 12 adantr φk1log2N2N
98 elfznn k1log2N2k
99 98 adantl φk1log2N2k
100 99 nnnn0d φk1log2N2k0
101 zexpcl Nk0Nk
102 97 100 101 syl2anc φk1log2N2Nk
103 1zzd φk1log2N21
104 102 103 zsubcld φk1log2N2Nk1
105 1cnd φk1log2N21
106 105 addridd φk1log2N21+0=1
107 22 adantr φk1log2N21
108 1nn0 10
109 108 a1i φ10
110 13 109 reexpcld φN1
111 110 adantr φk1log2N2N1
112 102 zred φk1log2N2Nk
113 1lt3 1<3
114 113 a1i φ1<3
115 22 16 13 114 20 ltletrd φ1<N
116 13 recnd φN
117 116 exp1d φN1=N
118 117 eqcomd φN=N1
119 115 118 breqtrd φ1<N1
120 119 adantr φk1log2N21<N1
121 13 adantr φk1log2N2N
122 64 nnge1d φ1N
123 122 adantr φk1log2N21N
124 elfzuz k1log2N2k1
125 124 adantl φk1log2N2k1
126 121 123 125 leexp2ad φk1log2N2N1Nk
127 107 111 112 120 126 ltletrd φk1log2N21<Nk
128 106 127 eqbrtrd φk1log2N21+0<Nk
129 14 adantr φk1log2N20
130 107 129 112 ltaddsub2d φk1log2N21+0<Nk0<Nk1
131 128 130 mpbid φk1log2N20<Nk1
132 104 131 jca φk1log2N2Nk10<Nk1
133 elnnz Nk1Nk10<Nk1
134 132 133 sylibr φk1log2N2Nk1
135 96 134 fprodnncl φk=1log2N2Nk1
136 95 135 nnmulcld φNlog2Bk=1log2N2Nk1
137 62 136 eqeltrd φA
138 137 nnred φA
139 138 adantr φr1BrAA
140 1 2 3 aks4d1p2 φ2Blcm_1B
141 140 adantr φr1BrA2Blcm_1B
142 137 nnzd φA
143 142 adantr φr1BrAA
144 56 adantr φr1BrA1B
145 fzfid φr1BrA1BFin
146 lcmfdvdsb A1B1BFinr1BrAlcm_1BA
147 143 144 145 146 syl3anc φr1BrAr1BrAlcm_1BA
148 147 biimpd φr1BrAr1BrAlcm_1BA
149 148 syldbl2 φr1BrAlcm_1BA
150 59 nn0zd φlcm_1B
151 150 adantr φr1BrAlcm_1B
152 137 adantr φr1BrAA
153 dvdsle lcm_1BAlcm_1BAlcm_1BA
154 151 152 153 syl2anc φr1BrAlcm_1BAlcm_1BA
155 149 154 mpd φr1BrAlcm_1BA
156 51 61 139 141 155 letrd φr1BrA2BA
157 51 139 lenltd φr1BrA2BA¬A<2B
158 156 157 mpbid φr1BrA¬A<2B
159 5 158 pm2.21dd φr1BrA¬r1BrA
160 simpr φ¬r1BrA¬r1BrA
161 159 160 pm2.61dan φ¬r1BrA
162 rexnal r1B¬rA¬r1BrA
163 161 162 sylibr φr1B¬rA