Metamath Proof Explorer


Theorem aks4d1p7d1

Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024)

Ref Expression
Hypotheses aks4d1p7d1.1 φ N 3
aks4d1p7d1.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p7d1.3 B = log 2 N 5
aks4d1p7d1.4 R = sup r 1 B | ¬ r A <
aks4d1p7d1.5 φ p p R p N
Assertion aks4d1p7d1 φ R N log 2 B

Proof

Step Hyp Ref Expression
1 aks4d1p7d1.1 φ N 3
2 aks4d1p7d1.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p7d1.3 B = log 2 N 5
4 aks4d1p7d1.4 R = sup r 1 B | ¬ r A <
5 aks4d1p7d1.5 φ p p R p N
6 simp2 φ p p R p
7 1 2 3 4 aks4d1p4 φ R 1 B ¬ R A
8 7 simpld φ R 1 B
9 elfznn R 1 B R
10 8 9 syl φ R
11 10 3ad2ant1 φ p p R R
12 6 11 pccld φ p p R p pCnt R 0
13 12 3expa φ p p R p pCnt R 0
14 13 nn0red φ p p R p pCnt R
15 2re 2
16 15 a1i φ 2
17 2pos 0 < 2
18 17 a1i φ 0 < 2
19 3 a1i φ B = log 2 N 5
20 eluzelz N 3 N
21 1 20 syl φ N
22 21 zred φ N
23 0red φ 0
24 3re 3
25 24 a1i φ 3
26 3pos 0 < 3
27 26 a1i φ 0 < 3
28 eluzle N 3 3 N
29 1 28 syl φ 3 N
30 23 25 22 27 29 ltletrd φ 0 < N
31 1red φ 1
32 1lt2 1 < 2
33 32 a1i φ 1 < 2
34 31 33 ltned φ 1 2
35 34 necomd φ 2 1
36 16 18 22 30 35 relogbcld φ log 2 N
37 5nn0 5 0
38 37 a1i φ 5 0
39 36 38 reexpcld φ log 2 N 5
40 ceilcl log 2 N 5 log 2 N 5
41 39 40 syl φ log 2 N 5
42 41 zred φ log 2 N 5
43 19 42 eqeltrd φ B
44 9re 9
45 44 a1i φ 9
46 9pos 0 < 9
47 46 a1i φ 0 < 9
48 22 29 3lexlogpow5ineq4 φ 9 < log 2 N 5
49 23 45 39 47 48 lttrd φ 0 < log 2 N 5
50 ceilge log 2 N 5 log 2 N 5 log 2 N 5
51 39 50 syl φ log 2 N 5 log 2 N 5
52 23 39 42 49 51 ltletrd φ 0 < log 2 N 5
53 52 19 breqtrrd φ 0 < B
54 16 18 43 53 35 relogbcld φ log 2 B
55 54 flcld φ log 2 B
56 55 zred φ log 2 B
57 56 ad2antrr φ p p R log 2 B
58 simplr φ p p R p
59 21 30 jca φ N 0 < N
60 elnnz N N 0 < N
61 59 60 sylibr φ N
62 61 ad2antrr φ p p R N
63 1cnd φ 1
64 63 addid2d φ 0 + 1 = 1
65 16 recnd φ 2
66 23 18 gtned φ 2 0
67 logbid1 2 2 0 2 1 log 2 2 = 1
68 65 66 35 67 syl3anc φ log 2 2 = 1
69 68 eqcomd φ 1 = log 2 2
70 64 69 eqtrd φ 0 + 1 = log 2 2
71 2z 2
72 71 a1i φ 2
73 16 leidd φ 2 2
74 2lt9 2 < 9
75 74 a1i φ 2 < 9
76 16 45 75 ltled φ 2 9
77 45 39 42 48 51 ltletrd φ 9 < log 2 N 5
78 77 19 breqtrrd φ 9 < B
79 45 43 78 ltled φ 9 B
80 16 45 43 76 79 letrd φ 2 B
81 72 73 16 18 43 53 80 logblebd φ log 2 2 log 2 B
82 70 81 eqbrtrd φ 0 + 1 log 2 B
83 0zd φ 0
84 83 peano2zd φ 0 + 1
85 flge log 2 B 0 + 1 0 + 1 log 2 B 0 + 1 log 2 B
86 54 84 85 syl2anc φ 0 + 1 log 2 B 0 + 1 log 2 B
87 82 86 mpbid φ 0 + 1 log 2 B
88 83 55 zltp1led φ 0 < log 2 B 0 + 1 log 2 B
89 87 88 mpbird φ 0 < log 2 B
90 55 89 jca φ log 2 B 0 < log 2 B
91 elnnz log 2 B log 2 B 0 < log 2 B
92 90 91 sylibr φ log 2 B
93 92 nnnn0d φ log 2 B 0
94 93 ad2antrr φ p p R log 2 B 0
95 62 94 nnexpcld φ p p R N log 2 B
96 58 95 pccld φ p p R p pCnt N log 2 B 0
97 96 nn0red φ p p R p pCnt N log 2 B
98 1 3ad2ant1 φ p p R N 3
99 simp3 φ p p R p R
100 eqid p pCnt R = p pCnt R
101 98 2 3 4 6 99 100 aks4d1p6 φ p p R p pCnt R log 2 B
102 101 3expa φ p p R p pCnt R log 2 B
103 58 62 pccld φ p p R p pCnt N 0
104 103 nn0red φ p p R p pCnt N
105 23 56 89 ltled φ 0 log 2 B
106 105 adantr φ p 0 log 2 B
107 106 adantr φ p p R 0 log 2 B
108 rsp p p R p N p p R p N
109 5 108 syl φ p p R p N
110 109 imp φ p p R p N
111 110 imp φ p p R p N
112 61 adantr φ p N
113 112 adantr φ p p R N
114 pcelnn p N p pCnt N p N
115 58 113 114 syl2anc φ p p R p pCnt N p N
116 111 115 mpbird φ p p R p pCnt N
117 nnge1 p pCnt N 1 p pCnt N
118 116 117 syl φ p p R 1 p pCnt N
119 57 104 107 118 lemulge11d φ p p R log 2 B log 2 B p pCnt N
120 zq N N
121 21 120 syl φ N
122 61 nnne0d φ N 0
123 121 122 jca φ N N 0
124 123 adantr φ p N N 0
125 124 adantr φ p p R N N 0
126 55 adantr φ p log 2 B
127 126 adantr φ p p R log 2 B
128 pcexp p N N 0 log 2 B p pCnt N log 2 B = log 2 B p pCnt N
129 58 125 127 128 syl3anc φ p p R p pCnt N log 2 B = log 2 B p pCnt N
130 119 129 breqtrrd φ p p R log 2 B p pCnt N log 2 B
131 14 57 97 102 130 letrd φ p p R p pCnt R p pCnt N log 2 B
132 simpr φ p ¬ p R ¬ p R
133 simplr φ p ¬ p R p
134 10 adantr φ p R
135 134 adantr φ p ¬ p R R
136 pceq0 p R p pCnt R = 0 ¬ p R
137 133 135 136 syl2anc φ p ¬ p R p pCnt R = 0 ¬ p R
138 132 137 mpbird φ p ¬ p R p pCnt R = 0
139 112 adantr φ p ¬ p R N
140 93 adantr φ p log 2 B 0
141 140 adantr φ p ¬ p R log 2 B 0
142 139 141 nnexpcld φ p ¬ p R N log 2 B
143 133 142 pccld φ p ¬ p R p pCnt N log 2 B 0
144 143 nn0ge0d φ p ¬ p R 0 p pCnt N log 2 B
145 138 144 eqbrtrd φ p ¬ p R p pCnt R p pCnt N log 2 B
146 131 145 pm2.61dan φ p p pCnt R p pCnt N log 2 B
147 146 ralrimiva φ p p pCnt R p pCnt N log 2 B
148 8 elfzelzd φ R
149 21 93 zexpcld φ N log 2 B
150 pc2dvds R N log 2 B R N log 2 B p p pCnt R p pCnt N log 2 B
151 148 149 150 syl2anc φ R N log 2 B p p pCnt R p pCnt N log 2 B
152 147 151 mpbird φ R N log 2 B