Metamath Proof Explorer


Theorem aks4d1p7d1

Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024)

Ref Expression
Hypotheses aks4d1p7d1.1 φN3
aks4d1p7d1.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p7d1.3 B=log2N5
aks4d1p7d1.4 R=supr1B|¬rA<
aks4d1p7d1.5 φppRpN
Assertion aks4d1p7d1 φRNlog2B

Proof

Step Hyp Ref Expression
1 aks4d1p7d1.1 φN3
2 aks4d1p7d1.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p7d1.3 B=log2N5
4 aks4d1p7d1.4 R=supr1B|¬rA<
5 aks4d1p7d1.5 φppRpN
6 simp2 φppRp
7 1 2 3 4 aks4d1p4 φR1B¬RA
8 7 simpld φR1B
9 elfznn R1BR
10 8 9 syl φR
11 10 3ad2ant1 φppRR
12 6 11 pccld φppRppCntR0
13 12 3expa φppRppCntR0
14 13 nn0red φppRppCntR
15 2re 2
16 15 a1i φ2
17 2pos 0<2
18 17 a1i φ0<2
19 3 a1i φB=log2N5
20 eluzelz N3N
21 1 20 syl φN
22 21 zred φN
23 0red φ0
24 3re 3
25 24 a1i φ3
26 3pos 0<3
27 26 a1i φ0<3
28 eluzle N33N
29 1 28 syl φ3N
30 23 25 22 27 29 ltletrd φ0<N
31 1red φ1
32 1lt2 1<2
33 32 a1i φ1<2
34 31 33 ltned φ12
35 34 necomd φ21
36 16 18 22 30 35 relogbcld φlog2N
37 5nn0 50
38 37 a1i φ50
39 36 38 reexpcld φlog2N5
40 ceilcl log2N5log2N5
41 39 40 syl φlog2N5
42 41 zred φlog2N5
43 19 42 eqeltrd φB
44 9re 9
45 44 a1i φ9
46 9pos 0<9
47 46 a1i φ0<9
48 22 29 3lexlogpow5ineq4 φ9<log2N5
49 23 45 39 47 48 lttrd φ0<log2N5
50 ceilge log2N5log2N5log2N5
51 39 50 syl φlog2N5log2N5
52 23 39 42 49 51 ltletrd φ0<log2N5
53 52 19 breqtrrd φ0<B
54 16 18 43 53 35 relogbcld φlog2B
55 54 flcld φlog2B
56 55 zred φlog2B
57 56 ad2antrr φppRlog2B
58 simplr φppRp
59 21 30 jca φN0<N
60 elnnz NN0<N
61 59 60 sylibr φN
62 61 ad2antrr φppRN
63 1cnd φ1
64 63 addlidd φ0+1=1
65 16 recnd φ2
66 23 18 gtned φ20
67 logbid1 22021log22=1
68 65 66 35 67 syl3anc φlog22=1
69 68 eqcomd φ1=log22
70 64 69 eqtrd φ0+1=log22
71 2z 2
72 71 a1i φ2
73 16 leidd φ22
74 2lt9 2<9
75 74 a1i φ2<9
76 16 45 75 ltled φ29
77 45 39 42 48 51 ltletrd φ9<log2N5
78 77 19 breqtrrd φ9<B
79 45 43 78 ltled φ9B
80 16 45 43 76 79 letrd φ2B
81 72 73 16 18 43 53 80 logblebd φlog22log2B
82 70 81 eqbrtrd φ0+1log2B
83 0zd φ0
84 83 peano2zd φ0+1
85 flge log2B0+10+1log2B0+1log2B
86 54 84 85 syl2anc φ0+1log2B0+1log2B
87 82 86 mpbid φ0+1log2B
88 83 55 zltp1led φ0<log2B0+1log2B
89 87 88 mpbird φ0<log2B
90 55 89 jca φlog2B0<log2B
91 elnnz log2Blog2B0<log2B
92 90 91 sylibr φlog2B
93 92 nnnn0d φlog2B0
94 93 ad2antrr φppRlog2B0
95 62 94 nnexpcld φppRNlog2B
96 58 95 pccld φppRppCntNlog2B0
97 96 nn0red φppRppCntNlog2B
98 1 3ad2ant1 φppRN3
99 simp3 φppRpR
100 eqid ppCntR=ppCntR
101 98 2 3 4 6 99 100 aks4d1p6 φppRppCntRlog2B
102 101 3expa φppRppCntRlog2B
103 58 62 pccld φppRppCntN0
104 103 nn0red φppRppCntN
105 23 56 89 ltled φ0log2B
106 105 adantr φp0log2B
107 106 adantr φppR0log2B
108 rsp ppRpNppRpN
109 5 108 syl φppRpN
110 109 imp φppRpN
111 110 imp φppRpN
112 61 adantr φpN
113 112 adantr φppRN
114 pcelnn pNppCntNpN
115 58 113 114 syl2anc φppRppCntNpN
116 111 115 mpbird φppRppCntN
117 nnge1 ppCntN1ppCntN
118 116 117 syl φppR1ppCntN
119 57 104 107 118 lemulge11d φppRlog2Blog2BppCntN
120 zq NN
121 21 120 syl φN
122 61 nnne0d φN0
123 121 122 jca φNN0
124 123 adantr φpNN0
125 124 adantr φppRNN0
126 55 adantr φplog2B
127 126 adantr φppRlog2B
128 pcexp pNN0log2BppCntNlog2B=log2BppCntN
129 58 125 127 128 syl3anc φppRppCntNlog2B=log2BppCntN
130 119 129 breqtrrd φppRlog2BppCntNlog2B
131 14 57 97 102 130 letrd φppRppCntRppCntNlog2B
132 simpr φp¬pR¬pR
133 simplr φp¬pRp
134 10 adantr φpR
135 134 adantr φp¬pRR
136 pceq0 pRppCntR=0¬pR
137 133 135 136 syl2anc φp¬pRppCntR=0¬pR
138 132 137 mpbird φp¬pRppCntR=0
139 112 adantr φp¬pRN
140 93 adantr φplog2B0
141 140 adantr φp¬pRlog2B0
142 139 141 nnexpcld φp¬pRNlog2B
143 133 142 pccld φp¬pRppCntNlog2B0
144 143 nn0ge0d φp¬pR0ppCntNlog2B
145 138 144 eqbrtrd φp¬pRppCntRppCntNlog2B
146 131 145 pm2.61dan φpppCntRppCntNlog2B
147 146 ralrimiva φpppCntRppCntNlog2B
148 8 elfzelzd φR
149 21 93 zexpcld φNlog2B
150 pc2dvds RNlog2BRNlog2BpppCntRppCntNlog2B
151 148 149 150 syl2anc φRNlog2BpppCntRppCntNlog2B
152 147 151 mpbird φRNlog2B