Metamath Proof Explorer


Theorem aks4d1p9

Description: Show that the order is bound by the squared binary logarithm. (Contributed by metakunt, 14-Nov-2024)

Ref Expression
Hypotheses aks4d1p9.1 φN3
aks4d1p9.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p9.3 B=log2N5
aks4d1p9.4 R=supr1B|¬rA<
Assertion aks4d1p9 φlog2N2<odRN

Proof

Step Hyp Ref Expression
1 aks4d1p9.1 φN3
2 aks4d1p9.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p9.3 B=log2N5
4 aks4d1p9.4 R=supr1B|¬rA<
5 2re 2
6 5 a1i φ2
7 2pos 0<2
8 7 a1i φ0<2
9 eluzelz N3N
10 1 9 syl φN
11 10 zred φN
12 0red φ0
13 3re 3
14 13 a1i φ3
15 3pos 0<3
16 15 a1i φ0<3
17 eluzle N33N
18 1 17 syl φ3N
19 12 14 11 16 18 ltletrd φ0<N
20 1red φ1
21 1lt2 1<2
22 21 a1i φ1<2
23 20 22 ltned φ12
24 23 necomd φ21
25 6 8 11 19 24 relogbcld φlog2N
26 25 resqcld φlog2N2
27 1 2 3 4 aks4d1p4 φR1B¬RA
28 27 simpld φR1B
29 elfznn R1BR
30 28 29 syl φR
31 1 2 3 4 aks4d1p8 φNgcdR=1
32 30 10 31 3jca φRNNgcdR=1
33 odzcl RNNgcdR=1odRN
34 32 33 syl φodRN
35 34 nnzd φodRN
36 flge log2N2odRNodRNlog2N2odRNlog2N2
37 26 35 36 syl2anc φodRNlog2N2odRNlog2N2
38 37 biimpd φodRNlog2N2odRNlog2N2
39 38 imp φodRNlog2N2odRNlog2N2
40 30 nnzd φR
41 40 adantr φodRNlog2N2R
42 10 adantr φodRNlog2N2N
43 34 nnnn0d φodRN0
44 43 adantr φodRNlog2N2odRN0
45 42 44 zexpcld φodRNlog2N2NodRN
46 1zzd φodRNlog2N21
47 45 46 zsubcld φodRNlog2N2NodRN1
48 1 3 aks4d1lem1 φB9<B
49 48 simpld φB
50 49 nnred φB
51 49 nngt0d φ0<B
52 6 8 50 51 24 relogbcld φlog2B
53 52 flcld φlog2B
54 2cnd φ2
55 12 8 gtned φ20
56 54 55 24 3jca φ22021
57 logb1 22021log21=0
58 56 57 syl φlog21=0
59 2z 2
60 59 a1i φ2
61 6 leidd φ22
62 0lt1 0<1
63 62 a1i φ0<1
64 49 nnge1d φ1B
65 60 61 20 63 50 51 64 logblebd φlog21log2B
66 58 65 eqbrtrrd φ0log2B
67 0zd φ0
68 flge log2B00log2B0log2B
69 52 67 68 syl2anc φ0log2B0log2B
70 66 69 mpbid φ0log2B
71 53 70 jca φlog2B0log2B
72 elnn0z log2B0log2B0log2B
73 71 72 sylibr φlog2B0
74 10 73 zexpcld φNlog2B
75 fzfid φ1log2N2Fin
76 10 adantr φk1log2N2N
77 elfznn k1log2N2k
78 77 nnnn0d k1log2N2k0
79 78 adantl φk1log2N2k0
80 76 79 zexpcld φk1log2N2Nk
81 1zzd φk1log2N21
82 80 81 zsubcld φk1log2N2Nk1
83 75 82 fprodzcl φk=1log2N2Nk1
84 74 83 zmulcld φNlog2Bk=1log2N2Nk1
85 2 a1i φA=Nlog2Bk=1log2N2Nk1
86 85 eleq1d φANlog2Bk=1log2N2Nk1
87 84 86 mpbird φA
88 87 adantr φodRNlog2N2A
89 iddvds odRNodRNodRN
90 35 89 syl φodRNodRN
91 odzdvds RNNgcdR=1odRN0RNodRN1odRNodRN
92 32 43 91 syl2anc φRNodRN1odRNodRN
93 90 92 mpbird φRNodRN1
94 93 adantr φodRNlog2N2RNodRN1
95 73 adantr φodRNlog2N2log2B0
96 42 95 zexpcld φodRNlog2N2Nlog2B
97 fzfid φodRNlog2N21log2N2Fin
98 42 adantr φodRNlog2N2k1log2N2N
99 77 adantl φodRNlog2N2k1log2N2k
100 99 nnnn0d φodRNlog2N2k1log2N2k0
101 98 100 zexpcld φodRNlog2N2k1log2N2Nk
102 1zzd φodRNlog2N2k1log2N21
103 101 102 zsubcld φodRNlog2N2k1log2N2Nk1
104 97 103 fprodzcl φodRNlog2N2k=1log2N2Nk1
105 fveq2 z=odRNx1log2N2Nx1z=x1log2N2Nx1odRN
106 105 breq1d z=odRNx1log2N2Nx1zk=1log2N2x1log2N2Nx1kx1log2N2Nx1odRNk=1log2N2x1log2N2Nx1k
107 ssidd φ1log2N21log2N2
108 10 adantr φx1log2N2N
109 elfznn x1log2N2x
110 109 adantl φx1log2N2x
111 110 nnnn0d φx1log2N2x0
112 108 111 zexpcld φx1log2N2Nx
113 1zzd φx1log2N21
114 112 113 zsubcld φx1log2N2Nx1
115 114 fmpttd φx1log2N2Nx1:1log2N2
116 75 107 115 fprodfvdvdsd φz1log2N2x1log2N2Nx1zk=1log2N2x1log2N2Nx1k
117 116 adantr φodRNlog2N2z1log2N2x1log2N2Nx1zk=1log2N2x1log2N2Nx1k
118 25 adantr φodRNlog2N2log2N
119 118 resqcld φodRNlog2N2log2N2
120 119 flcld φodRNlog2N2log2N2
121 35 adantr φodRNlog2N2odRN
122 34 nnge1d φ1odRN
123 122 adantr φodRNlog2N21odRN
124 simpr φodRNlog2N2odRNlog2N2
125 46 120 121 123 124 elfzd φodRNlog2N2odRN1log2N2
126 106 117 125 rspcdva φodRNlog2N2x1log2N2Nx1odRNk=1log2N2x1log2N2Nx1k
127 eqidd φodRNlog2N2x1log2N2Nx1=x1log2N2Nx1
128 simpr φodRNlog2N2x=odRNx=odRN
129 128 oveq2d φodRNlog2N2x=odRNNx=NodRN
130 129 oveq1d φodRNlog2N2x=odRNNx1=NodRN1
131 127 130 125 47 fvmptd φodRNlog2N2x1log2N2Nx1odRN=NodRN1
132 eqidd φodRNlog2N2k1log2N2x1log2N2Nx1=x1log2N2Nx1
133 simpr φodRNlog2N2k1log2N2x=kx=k
134 133 oveq2d φodRNlog2N2k1log2N2x=kNx=Nk
135 134 oveq1d φodRNlog2N2k1log2N2x=kNx1=Nk1
136 simpr φodRNlog2N2k1log2N2k1log2N2
137 132 135 136 103 fvmptd φodRNlog2N2k1log2N2x1log2N2Nx1k=Nk1
138 137 prodeq2dv φodRNlog2N2k=1log2N2x1log2N2Nx1k=k=1log2N2Nk1
139 131 138 breq12d φodRNlog2N2x1log2N2Nx1odRNk=1log2N2x1log2N2Nx1kNodRN1k=1log2N2Nk1
140 126 139 mpbid φodRNlog2N2NodRN1k=1log2N2Nk1
141 47 96 104 140 dvdsmultr2d φodRNlog2N2NodRN1Nlog2Bk=1log2N2Nk1
142 2 a1i φodRNlog2N2A=Nlog2Bk=1log2N2Nk1
143 141 142 breqtrrd φodRNlog2N2NodRN1A
144 41 47 88 94 143 dvdstrd φodRNlog2N2RA
145 144 ex φodRNlog2N2RA
146 145 adantr φodRNlog2N2odRNlog2N2RA
147 146 imp φodRNlog2N2odRNlog2N2RA
148 39 147 mpdan φodRNlog2N2RA
149 27 simprd φ¬RA
150 149 adantr φodRNlog2N2¬RA
151 148 150 pm2.65da φ¬odRNlog2N2
152 34 nnred φodRN
153 26 152 ltnled φlog2N2<odRN¬odRNlog2N2
154 151 153 mpbird φlog2N2<odRN