Metamath Proof Explorer


Theorem areacirclem2

Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Assertion areacirclem2 R0RtRRR2t2:RRcn

Proof

Step Hyp Ref Expression
1 resqcl RR2
2 1 adantr R0RR2
3 2 adantr R0RtRRR2
4 renegcl RR
5 iccssre RRRR
6 4 5 mpancom RRR
7 6 sselda RtRRt
8 7 resqcld RtRRt2
9 8 adantlr R0RtRRt2
10 3 9 resubcld R0RtRRR2t2
11 elicc2 RRtRRtRttR
12 4 11 mpancom RtRRtRttR
13 12 adantr R0RtRRtRttR
14 1 3ad2ant1 R0RtR2
15 resqcl tt2
16 15 3ad2ant3 R0Rtt2
17 14 16 subge0d R0Rt0R2t2t2R2
18 absresq tt2=t2
19 18 3ad2ant3 R0Rtt2=t2
20 19 breq1d R0Rtt2R2t2R2
21 17 20 bitr4d R0Rt0R2t2t2R2
22 recn tt
23 22 abscld tt
24 23 3ad2ant3 R0Rtt
25 simp1 R0RtR
26 22 absge0d t0t
27 26 3ad2ant3 R0Rt0t
28 simp2 R0Rt0R
29 24 25 27 28 le2sqd R0RttRt2R2
30 simp3 R0Rtt
31 30 25 absled R0RttRRttR
32 21 29 31 3bitr2d R0Rt0R2t2RttR
33 32 biimprd R0RtRttR0R2t2
34 33 3expa R0RtRttR0R2t2
35 34 exp4b R0RtRttR0R2t2
36 35 3impd R0RtRttR0R2t2
37 13 36 sylbid R0RtRR0R2t2
38 37 imp R0RtRR0R2t2
39 elrege0 R2t20+∞R2t20R2t2
40 10 38 39 sylanbrc R0RtRRR2t20+∞
41 fvres R2t20+∞0+∞R2t2=R2t2
42 40 41 syl R0RtRR0+∞R2t2=R2t2
43 42 mpteq2dva R0RtRR0+∞R2t2=tRRR2t2
44 eqid TopOpenfld=TopOpenfld
45 44 cnfldtopon TopOpenfldTopOn
46 ax-resscn
47 6 46 sstrdi RRR
48 resttopon TopOpenfldTopOnRRTopOpenfld𝑡RRTopOnRR
49 45 47 48 sylancr RTopOpenfld𝑡RRTopOnRR
50 49 adantr R0RTopOpenfld𝑡RRTopOnRR
51 47 resmptd RtR2t2RR=tRRR2t2
52 45 a1i RTopOpenfldTopOn
53 recn RR
54 53 sqcld RR2
55 52 52 54 cnmptc RtR2TopOpenfldCnTopOpenfld
56 44 sqcn tt2TopOpenfldCnTopOpenfld
57 56 a1i Rtt2TopOpenfldCnTopOpenfld
58 44 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
59 58 a1i RTopOpenfld×tTopOpenfldCnTopOpenfld
60 52 55 57 59 cnmpt12f RtR2t2TopOpenfldCnTopOpenfld
61 45 toponunii =TopOpenfld
62 61 cnrest tR2t2TopOpenfldCnTopOpenfldRRtR2t2RRTopOpenfld𝑡RRCnTopOpenfld
63 60 47 62 syl2anc RtR2t2RRTopOpenfld𝑡RRCnTopOpenfld
64 51 63 eqeltrrd RtRRR2t2TopOpenfld𝑡RRCnTopOpenfld
65 64 adantr R0RtRRR2t2TopOpenfld𝑡RRCnTopOpenfld
66 45 a1i R0RTopOpenfldTopOn
67 eqid tRRR2t2=tRRR2t2
68 67 rnmpt rantRRR2t2=u|tRRu=R2t2
69 simp3 R0RtRRu=R2t2u=R2t2
70 40 3adant3 R0RtRRu=R2t2R2t20+∞
71 69 70 eqeltrd R0RtRRu=R2t2u0+∞
72 71 rexlimdv3a R0RtRRu=R2t2u0+∞
73 72 abssdv R0Ru|tRRu=R2t20+∞
74 68 73 eqsstrid R0RrantRRR2t20+∞
75 rge0ssre 0+∞
76 75 46 sstri 0+∞
77 76 a1i R0R0+∞
78 cnrest2 TopOpenfldTopOnrantRRR2t20+∞0+∞tRRR2t2TopOpenfld𝑡RRCnTopOpenfldtRRR2t2TopOpenfld𝑡RRCnTopOpenfld𝑡0+∞
79 66 74 77 78 syl3anc R0RtRRR2t2TopOpenfld𝑡RRCnTopOpenfldtRRR2t2TopOpenfld𝑡RRCnTopOpenfld𝑡0+∞
80 65 79 mpbid R0RtRRR2t2TopOpenfld𝑡RRCnTopOpenfld𝑡0+∞
81 ssid
82 cncfss 0+∞cn0+∞cn
83 46 81 82 mp2an 0+∞cn0+∞cn
84 resqrtcn 0+∞:0+∞cn
85 83 84 sselii 0+∞:0+∞cn
86 eqid TopOpenfld𝑡0+∞=TopOpenfld𝑡0+∞
87 eqid TopOpenfld𝑡=TopOpenfld𝑡
88 44 86 87 cncfcn 0+∞0+∞cn=TopOpenfld𝑡0+∞CnTopOpenfld𝑡
89 76 81 88 mp2an 0+∞cn=TopOpenfld𝑡0+∞CnTopOpenfld𝑡
90 85 89 eleqtri 0+∞TopOpenfld𝑡0+∞CnTopOpenfld𝑡
91 90 a1i R0R0+∞TopOpenfld𝑡0+∞CnTopOpenfld𝑡
92 50 80 91 cnmpt11f R0RtRR0+∞R2t2TopOpenfld𝑡RRCnTopOpenfld𝑡
93 eqid TopOpenfld𝑡RR=TopOpenfld𝑡RR
94 44 93 87 cncfcn RRRRcn=TopOpenfld𝑡RRCnTopOpenfld𝑡
95 47 81 94 sylancl RRRcn=TopOpenfld𝑡RRCnTopOpenfld𝑡
96 95 adantr R0RRRcn=TopOpenfld𝑡RRCnTopOpenfld𝑡
97 92 96 eleqtrrd R0RtRR0+∞R2t2:RRcn
98 43 97 eqeltrrd R0RtRRR2t2:RRcn