Metamath Proof Explorer


Theorem chnub

Description: In a chain, the last element is an upper bound. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses chnub.1 φ < ˙ Po A
chnub.2 φ C Chain A < ˙
chnub.3 φ I 0 ..^ C 1
Assertion chnub φ C I < ˙ lastS C

Proof

Step Hyp Ref Expression
1 chnub.1 φ < ˙ Po A
2 chnub.2 φ C Chain A < ˙
3 chnub.3 φ I 0 ..^ C 1
4 fveq2 i = I C i = C I
5 4 breq1d i = I C i < ˙ lastS C C I < ˙ lastS C
6 fveq2 c = c =
7 6 oveq1d c = c 1 = 1
8 7 oveq2d c = 0 ..^ c 1 = 0 ..^ 1
9 fveq1 c = c i = i
10 fveq2 c = lastS c = lastS
11 9 10 breq12d c = c i < ˙ lastS c i < ˙ lastS
12 8 11 raleqbidv c = i 0 ..^ c 1 c i < ˙ lastS c i 0 ..^ 1 i < ˙ lastS
13 fveq2 c = d c = d
14 13 oveq1d c = d c 1 = d 1
15 14 oveq2d c = d 0 ..^ c 1 = 0 ..^ d 1
16 fveq1 c = d c i = d i
17 fveq2 c = d lastS c = lastS d
18 16 17 breq12d c = d c i < ˙ lastS c d i < ˙ lastS d
19 15 18 raleqbidv c = d i 0 ..^ c 1 c i < ˙ lastS c i 0 ..^ d 1 d i < ˙ lastS d
20 fveq2 i = j c i = c j
21 20 breq1d i = j c i < ˙ lastS c c j < ˙ lastS c
22 21 cbvralvw i 0 ..^ c 1 c i < ˙ lastS c j 0 ..^ c 1 c j < ˙ lastS c
23 fveq2 c = d ++ ⟨“ x ”⟩ c = d ++ ⟨“ x ”⟩
24 23 oveq1d c = d ++ ⟨“ x ”⟩ c 1 = d ++ ⟨“ x ”⟩ 1
25 24 oveq2d c = d ++ ⟨“ x ”⟩ 0 ..^ c 1 = 0 ..^ d ++ ⟨“ x ”⟩ 1
26 fveq1 c = d ++ ⟨“ x ”⟩ c j = d ++ ⟨“ x ”⟩ j
27 fveq2 c = d ++ ⟨“ x ”⟩ lastS c = lastS d ++ ⟨“ x ”⟩
28 26 27 breq12d c = d ++ ⟨“ x ”⟩ c j < ˙ lastS c d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
29 25 28 raleqbidv c = d ++ ⟨“ x ”⟩ j 0 ..^ c 1 c j < ˙ lastS c j 0 ..^ d ++ ⟨“ x ”⟩ 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
30 22 29 bitrid c = d ++ ⟨“ x ”⟩ i 0 ..^ c 1 c i < ˙ lastS c j 0 ..^ d ++ ⟨“ x ”⟩ 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
31 fveq2 c = C c = C
32 31 oveq1d c = C c 1 = C 1
33 32 oveq2d c = C 0 ..^ c 1 = 0 ..^ C 1
34 fveq1 c = C c i = C i
35 fveq2 c = C lastS c = lastS C
36 34 35 breq12d c = C c i < ˙ lastS c C i < ˙ lastS C
37 33 36 raleqbidv c = C i 0 ..^ c 1 c i < ˙ lastS c i 0 ..^ C 1 C i < ˙ lastS C
38 ral0 i i < ˙ lastS
39 hash0 = 0
40 39 oveq1i 1 = 0 1
41 df-neg 1 = 0 1
42 neg1rr 1
43 0re 0
44 neg1lt0 1 < 0
45 42 43 44 ltleii 1 0
46 41 45 eqbrtrri 0 1 0
47 40 46 eqbrtri 1 0
48 0z 0
49 39 48 eqeltri
50 1z 1
51 zsubcl 1 1
52 49 50 51 mp2an 1
53 fzon 0 1 1 0 0 ..^ 1 =
54 48 52 53 mp2an 1 0 0 ..^ 1 =
55 47 54 mpbi 0 ..^ 1 =
56 55 raleqi i 0 ..^ 1 i < ˙ lastS i i < ˙ lastS
57 38 56 mpbir i 0 ..^ 1 i < ˙ lastS
58 57 a1i φ i 0 ..^ 1 i < ˙ lastS
59 simp-6r φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d Chain A < ˙
60 59 chnwrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d Word A
61 ccatws1len d Word A d ++ ⟨“ x ”⟩ = d + 1
62 60 61 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d ++ ⟨“ x ”⟩ = d + 1
63 simpr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d =
64 63 fveq2d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d =
65 64 39 eqtrdi φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d = 0
66 65 oveq1d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d + 1 = 0 + 1
67 0p1e1 0 + 1 = 1
68 67 a1i φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = 0 + 1 = 1
69 62 66 68 3eqtrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d ++ ⟨“ x ”⟩ = 1
70 69 oveq1d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d ++ ⟨“ x ”⟩ 1 = 1 1
71 1m1e0 1 1 = 0
72 70 71 eqtrdi φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d ++ ⟨“ x ”⟩ 1 = 0
73 72 oveq2d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = 0 ..^ d ++ ⟨“ x ”⟩ 1 = 0 ..^ 0
74 fzo0 0 ..^ 0 =
75 73 74 eqtrdi φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = 0 ..^ d ++ ⟨“ x ”⟩ 1 =
76 simplr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = j 0 ..^ d ++ ⟨“ x ”⟩ 1
77 76 ne0d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = 0 ..^ d ++ ⟨“ x ”⟩ 1
78 75 77 pm2.21ddne φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d = d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
79 1 ad7antr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 < ˙ Po A
80 simp-6r φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d Chain A < ˙
81 80 chnwrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d Word A
82 81 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d Word A
83 simp-5r φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d x A
84 83 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 x A
85 ccatws1cl d Word A x A d ++ ⟨“ x ”⟩ Word A
86 82 84 85 syl2anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ Word A
87 lencl d Word A d 0
88 81 87 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 0
89 88 nn0zd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d
90 1zzd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d 1
91 89 90 zsubcld φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 1
92 89 peano2zd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d + 1
93 91 zred φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 1
94 92 zred φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d + 1
95 simpr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d
96 hasheq0 d Word A d = 0 d =
97 96 necon3bid d Word A d 0 d
98 97 biimpar d Word A d d 0
99 81 95 98 syl2anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 0
100 elnnne0 d d 0 d 0
101 88 99 100 sylanbrc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d
102 101 nnred φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d
103 102 ltm1d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 1 < d
104 102 ltp1d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d < d + 1
105 93 102 94 103 104 lttrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 1 < d + 1
106 93 94 105 ltled φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 1 d + 1
107 eluz2 d + 1 d 1 d 1 d + 1 d 1 d + 1
108 91 92 106 107 syl3anbrc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d + 1 d 1
109 fzoss2 d + 1 d 1 0 ..^ d 1 0 ..^ d + 1
110 108 109 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d 0 ..^ d 1 0 ..^ d + 1
111 110 sselda φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 j 0 ..^ d + 1
112 82 61 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ = d + 1
113 112 oveq2d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 0 ..^ d ++ ⟨“ x ”⟩ = 0 ..^ d + 1
114 111 113 eleqtrrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 j 0 ..^ d ++ ⟨“ x ”⟩
115 wrdsymbcl d ++ ⟨“ x ”⟩ Word A j 0 ..^ d ++ ⟨“ x ”⟩ d ++ ⟨“ x ”⟩ j A
116 86 114 115 syl2anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ j A
117 simplr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d
118 lswcl d Word A d lastS d A
119 82 117 118 syl2anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 lastS d A
120 lswccats1 d Word A x A lastS d ++ ⟨“ x ”⟩ = x
121 81 83 120 syl2anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d lastS d ++ ⟨“ x ”⟩ = x
122 121 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 lastS d ++ ⟨“ x ”⟩ = x
123 122 84 eqeltrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 lastS d ++ ⟨“ x ”⟩ A
124 116 119 123 3jca φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ j A lastS d A lastS d ++ ⟨“ x ”⟩ A
125 simplr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d ++ ⟨“ x ”⟩ 1
126 61 oveq1d d Word A d ++ ⟨“ x ”⟩ 1 = d + 1 - 1
127 81 126 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d ++ ⟨“ x ”⟩ 1 = d + 1 - 1
128 101 nncnd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d
129 1cnd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d 1
130 128 129 pncand φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d + 1 - 1 = d
131 127 130 eqtrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d ++ ⟨“ x ”⟩ 1 = d
132 131 oveq2d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d 0 ..^ d ++ ⟨“ x ”⟩ 1 = 0 ..^ d
133 125 132 eleqtrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d
134 133 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 j 0 ..^ d
135 ccats1val1 d Word A j 0 ..^ d d ++ ⟨“ x ”⟩ j = d j
136 82 134 135 syl2anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ j = d j
137 fveq2 i = j d i = d j
138 137 breq1d i = j d i < ˙ lastS d d j < ˙ lastS d
139 simp-4r φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 i 0 ..^ d 1 d i < ˙ lastS d
140 simpr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 j 0 ..^ d 1
141 138 139 140 rspcdva φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d j < ˙ lastS d
142 136 141 eqbrtrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d
143 simp-4r φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d = lastS d < ˙ x
144 95 neneqd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d ¬ d =
145 143 144 orcnd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d lastS d < ˙ x
146 145 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 lastS d < ˙ x
147 146 122 breqtrrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 lastS d < ˙ lastS d ++ ⟨“ x ”⟩
148 potr < ˙ Po A d ++ ⟨“ x ”⟩ j A lastS d A lastS d ++ ⟨“ x ”⟩ A d ++ ⟨“ x ”⟩ j < ˙ lastS d lastS d < ˙ lastS d ++ ⟨“ x ”⟩ d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
149 148 imp < ˙ Po A d ++ ⟨“ x ”⟩ j A lastS d A lastS d ++ ⟨“ x ”⟩ A d ++ ⟨“ x ”⟩ j < ˙ lastS d lastS d < ˙ lastS d ++ ⟨“ x ”⟩ d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
150 79 124 142 147 149 syl22anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
151 145 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 lastS d < ˙ x
152 81 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d Word A
153 simp-6r φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 x A
154 153 s1cld φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 ⟨“ x ”⟩ Word A
155 101 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d
156 fzo0end d d 1 0 ..^ d
157 155 156 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d 1 0 ..^ d
158 ccatval1 d Word A ⟨“ x ”⟩ Word A d 1 0 ..^ d d ++ ⟨“ x ”⟩ d 1 = d d 1
159 152 154 157 158 syl3anc φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d ++ ⟨“ x ”⟩ d 1 = d d 1
160 simpr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 j = d 1
161 160 fveq2d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d ++ ⟨“ x ”⟩ j = d ++ ⟨“ x ”⟩ d 1
162 lsw d Word A lastS d = d d 1
163 152 162 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 lastS d = d d 1
164 159 161 163 3eqtr4d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d ++ ⟨“ x ”⟩ j = lastS d
165 121 adantr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 lastS d ++ ⟨“ x ”⟩ = x
166 151 164 165 3brtr4d φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j = d 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
167 67 fveq2i 0 + 1 = 1
168 nnuz = 1
169 167 168 eqtr4i 0 + 1 =
170 101 169 eleqtrrdi φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d 0 + 1
171 fzosplitsnm1 0 d 0 + 1 0 ..^ d = 0 ..^ d 1 d 1
172 48 170 171 sylancr φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d 0 ..^ d = 0 ..^ d 1 d 1
173 133 172 eleqtrd φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 d 1
174 elunsn j 0 ..^ d 1 d 1 j 0 ..^ d 1 d 1 j 0 ..^ d 1 j = d 1
175 174 ibi j 0 ..^ d 1 d 1 j 0 ..^ d 1 j = d 1
176 173 175 syl φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d j 0 ..^ d 1 j = d 1
177 150 166 176 mpjaodan φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
178 78 177 pm2.61dane φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
179 178 ralrimiva φ d Chain A < ˙ x A d = lastS d < ˙ x i 0 ..^ d 1 d i < ˙ lastS d j 0 ..^ d ++ ⟨“ x ”⟩ 1 d ++ ⟨“ x ”⟩ j < ˙ lastS d ++ ⟨“ x ”⟩
180 12 19 30 37 2 58 179 chnind φ i 0 ..^ C 1 C i < ˙ lastS C
181 5 180 3 rspcdva φ C I < ˙ lastS C