Step |
Hyp |
Ref |
Expression |
1 |
|
chnub.1 |
|
2 |
|
chnub.2 |
|
3 |
|
chnub.3 |
|
4 |
|
fveq2 |
|
5 |
4
|
breq1d |
|
6 |
|
fveq2 |
|
7 |
6
|
oveq1d |
|
8 |
7
|
oveq2d |
|
9 |
|
fveq1 |
|
10 |
|
fveq2 |
|
11 |
9 10
|
breq12d |
|
12 |
8 11
|
raleqbidv |
|
13 |
|
fveq2 |
|
14 |
13
|
oveq1d |
|
15 |
14
|
oveq2d |
|
16 |
|
fveq1 |
|
17 |
|
fveq2 |
|
18 |
16 17
|
breq12d |
|
19 |
15 18
|
raleqbidv |
|
20 |
|
fveq2 |
|
21 |
20
|
breq1d |
|
22 |
21
|
cbvralvw |
|
23 |
|
fveq2 |
|
24 |
23
|
oveq1d |
|
25 |
24
|
oveq2d |
|
26 |
|
fveq1 |
|
27 |
|
fveq2 |
|
28 |
26 27
|
breq12d |
|
29 |
25 28
|
raleqbidv |
|
30 |
22 29
|
bitrid |
|
31 |
|
fveq2 |
|
32 |
31
|
oveq1d |
|
33 |
32
|
oveq2d |
|
34 |
|
fveq1 |
|
35 |
|
fveq2 |
|
36 |
34 35
|
breq12d |
|
37 |
33 36
|
raleqbidv |
|
38 |
|
ral0 |
|
39 |
|
hash0 |
|
40 |
39
|
oveq1i |
|
41 |
|
df-neg |
|
42 |
|
neg1rr |
|
43 |
|
0re |
|
44 |
|
neg1lt0 |
|
45 |
42 43 44
|
ltleii |
|
46 |
41 45
|
eqbrtrri |
|
47 |
40 46
|
eqbrtri |
|
48 |
|
0z |
|
49 |
39 48
|
eqeltri |
|
50 |
|
1z |
|
51 |
|
zsubcl |
|
52 |
49 50 51
|
mp2an |
|
53 |
|
fzon |
|
54 |
48 52 53
|
mp2an |
|
55 |
47 54
|
mpbi |
|
56 |
55
|
raleqi |
|
57 |
38 56
|
mpbir |
|
58 |
57
|
a1i |
|
59 |
|
simp-6r |
|
60 |
59
|
chnwrd |
|
61 |
|
ccatws1len |
|
62 |
60 61
|
syl |
|
63 |
|
simpr |
|
64 |
63
|
fveq2d |
|
65 |
64 39
|
eqtrdi |
|
66 |
65
|
oveq1d |
|
67 |
|
0p1e1 |
|
68 |
67
|
a1i |
|
69 |
62 66 68
|
3eqtrd |
|
70 |
69
|
oveq1d |
|
71 |
|
1m1e0 |
|
72 |
70 71
|
eqtrdi |
|
73 |
72
|
oveq2d |
|
74 |
|
fzo0 |
|
75 |
73 74
|
eqtrdi |
|
76 |
|
simplr |
|
77 |
76
|
ne0d |
|
78 |
75 77
|
pm2.21ddne |
|
79 |
1
|
ad7antr |
|
80 |
|
simp-6r |
|
81 |
80
|
chnwrd |
|
82 |
81
|
adantr |
|
83 |
|
simp-5r |
|
84 |
83
|
adantr |
|
85 |
|
ccatws1cl |
|
86 |
82 84 85
|
syl2anc |
|
87 |
|
lencl |
|
88 |
81 87
|
syl |
|
89 |
88
|
nn0zd |
|
90 |
|
1zzd |
|
91 |
89 90
|
zsubcld |
|
92 |
89
|
peano2zd |
|
93 |
91
|
zred |
|
94 |
92
|
zred |
|
95 |
|
simpr |
|
96 |
|
hasheq0 |
|
97 |
96
|
necon3bid |
|
98 |
97
|
biimpar |
|
99 |
81 95 98
|
syl2anc |
|
100 |
|
elnnne0 |
|
101 |
88 99 100
|
sylanbrc |
|
102 |
101
|
nnred |
|
103 |
102
|
ltm1d |
|
104 |
102
|
ltp1d |
|
105 |
93 102 94 103 104
|
lttrd |
|
106 |
93 94 105
|
ltled |
|
107 |
|
eluz2 |
|
108 |
91 92 106 107
|
syl3anbrc |
|
109 |
|
fzoss2 |
|
110 |
108 109
|
syl |
|
111 |
110
|
sselda |
|
112 |
82 61
|
syl |
|
113 |
112
|
oveq2d |
|
114 |
111 113
|
eleqtrrd |
|
115 |
|
wrdsymbcl |
|
116 |
86 114 115
|
syl2anc |
|
117 |
|
simplr |
|
118 |
|
lswcl |
|
119 |
82 117 118
|
syl2anc |
|
120 |
|
lswccats1 |
|
121 |
81 83 120
|
syl2anc |
|
122 |
121
|
adantr |
|
123 |
122 84
|
eqeltrd |
|
124 |
116 119 123
|
3jca |
|
125 |
|
simplr |
|
126 |
61
|
oveq1d |
|
127 |
81 126
|
syl |
|
128 |
101
|
nncnd |
|
129 |
|
1cnd |
|
130 |
128 129
|
pncand |
|
131 |
127 130
|
eqtrd |
|
132 |
131
|
oveq2d |
|
133 |
125 132
|
eleqtrd |
|
134 |
133
|
adantr |
|
135 |
|
ccats1val1 |
|
136 |
82 134 135
|
syl2anc |
|
137 |
|
fveq2 |
|
138 |
137
|
breq1d |
|
139 |
|
simp-4r |
|
140 |
|
simpr |
|
141 |
138 139 140
|
rspcdva |
|
142 |
136 141
|
eqbrtrd |
|
143 |
|
simp-4r |
|
144 |
95
|
neneqd |
|
145 |
143 144
|
orcnd |
|
146 |
145
|
adantr |
|
147 |
146 122
|
breqtrrd |
|
148 |
|
potr |
|
149 |
148
|
imp |
|
150 |
79 124 142 147 149
|
syl22anc |
|
151 |
145
|
adantr |
|
152 |
81
|
adantr |
|
153 |
|
simp-6r |
|
154 |
153
|
s1cld |
|
155 |
101
|
adantr |
|
156 |
|
fzo0end |
|
157 |
155 156
|
syl |
|
158 |
|
ccatval1 |
|
159 |
152 154 157 158
|
syl3anc |
|
160 |
|
simpr |
|
161 |
160
|
fveq2d |
|
162 |
|
lsw |
|
163 |
152 162
|
syl |
|
164 |
159 161 163
|
3eqtr4d |
|
165 |
121
|
adantr |
|
166 |
151 164 165
|
3brtr4d |
|
167 |
67
|
fveq2i |
|
168 |
|
nnuz |
|
169 |
167 168
|
eqtr4i |
|
170 |
101 169
|
eleqtrrdi |
|
171 |
|
fzosplitsnm1 |
|
172 |
48 170 171
|
sylancr |
|
173 |
133 172
|
eleqtrd |
|
174 |
|
elunsn |
|
175 |
174
|
ibi |
|
176 |
173 175
|
syl |
|
177 |
150 166 176
|
mpjaodan |
|
178 |
78 177
|
pm2.61dane |
|
179 |
178
|
ralrimiva |
|
180 |
12 19 30 37 2 58 179
|
chnind |
|
181 |
5 180 3
|
rspcdva |
|