Metamath Proof Explorer


Theorem cvmliftlem8

Description: Lemma for cvmlift . The functions Q are continuous functions because they are defined as ` ``' ( F |`I ) o. G where G is continuous and ` ( F |`I ) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
cvmliftlem5.3 W = M 1 N M N
Assertion cvmliftlem8 φ M 1 N Q M L 𝑡 W Cn C

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 cvmliftlem5.3 W = M 1 N M N
14 elfznn M 1 N M
15 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem5 φ M Q M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
16 14 15 sylan2 φ M 1 N Q M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
17 4 adantr φ M 1 N F C CovMap J
18 cvmtop1 F C CovMap J C Top
19 cnrest2r C Top L 𝑡 W Cn C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b L 𝑡 W Cn C
20 17 18 19 3syl φ M 1 N L 𝑡 W Cn C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b L 𝑡 W Cn C
21 retopon topGen ran . TopOn
22 11 21 eqeltri L TopOn
23 simpr φ M 1 N M 1 N
24 1 2 3 4 5 6 7 8 9 10 11 23 13 cvmliftlem2 φ M 1 N W 0 1
25 unitssre 0 1
26 24 25 sstrdi φ M 1 N W
27 resttopon L TopOn W L 𝑡 W TopOn W
28 22 26 27 sylancr φ M 1 N L 𝑡 W TopOn W
29 eqid II 𝑡 W = II 𝑡 W
30 iitopon II TopOn 0 1
31 30 a1i φ M 1 N II TopOn 0 1
32 5 adantr φ M 1 N G II Cn J
33 iiuni 0 1 = II
34 33 3 cnf G II Cn J G : 0 1 X
35 32 34 syl φ M 1 N G : 0 1 X
36 35 feqmptd φ M 1 N G = z 0 1 G z
37 36 32 eqeltrrd φ M 1 N z 0 1 G z II Cn J
38 29 31 24 37 cnmpt1res φ M 1 N z W G z II 𝑡 W Cn J
39 dfii2 II = topGen ran . 𝑡 0 1
40 11 oveq1i L 𝑡 0 1 = topGen ran . 𝑡 0 1
41 39 40 eqtr4i II = L 𝑡 0 1
42 41 oveq1i II 𝑡 W = L 𝑡 0 1 𝑡 W
43 retop topGen ran . Top
44 11 43 eqeltri L Top
45 44 a1i φ M 1 N L Top
46 ovexd φ M 1 N 0 1 V
47 restabs L Top W 0 1 0 1 V L 𝑡 0 1 𝑡 W = L 𝑡 W
48 45 24 46 47 syl3anc φ M 1 N L 𝑡 0 1 𝑡 W = L 𝑡 W
49 42 48 syl5eq φ M 1 N II 𝑡 W = L 𝑡 W
50 49 oveq1d φ M 1 N II 𝑡 W Cn J = L 𝑡 W Cn J
51 38 50 eleqtrd φ M 1 N z W G z L 𝑡 W Cn J
52 cvmtop2 F C CovMap J J Top
53 17 52 syl φ M 1 N J Top
54 3 toptopon J Top J TopOn X
55 53 54 sylib φ M 1 N J TopOn X
56 simprl φ M 1 N z W M 1 N
57 simprr φ M 1 N z W z W
58 1 2 3 4 5 6 7 8 9 10 11 56 13 57 cvmliftlem3 φ M 1 N z W G z 1 st T M
59 58 anassrs φ M 1 N z W G z 1 st T M
60 59 fmpttd φ M 1 N z W G z : W 1 st T M
61 60 frnd φ M 1 N ran z W G z 1 st T M
62 1 2 3 4 5 6 7 8 9 10 11 23 cvmliftlem1 φ M 1 N 2 nd T M S 1 st T M
63 1 cvmsrcl 2 nd T M S 1 st T M 1 st T M J
64 elssuni 1 st T M J 1 st T M J
65 62 63 64 3syl φ M 1 N 1 st T M J
66 65 3 sseqtrrdi φ M 1 N 1 st T M X
67 cnrest2 J TopOn X ran z W G z 1 st T M 1 st T M X z W G z L 𝑡 W Cn J z W G z L 𝑡 W Cn J 𝑡 1 st T M
68 55 61 66 67 syl3anc φ M 1 N z W G z L 𝑡 W Cn J z W G z L 𝑡 W Cn J 𝑡 1 st T M
69 51 68 mpbid φ M 1 N z W G z L 𝑡 W Cn J 𝑡 1 st T M
70 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem7 φ M 1 N Q M 1 M 1 N F -1 G M 1 N
71 cvmcn F C CovMap J F C Cn J
72 2 3 cnf F C Cn J F : B X
73 17 71 72 3syl φ M 1 N F : B X
74 ffn F : B X F Fn B
75 fniniseg F Fn B Q M 1 M 1 N F -1 G M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
76 73 74 75 3syl φ M 1 N Q M 1 M 1 N F -1 G M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
77 70 76 mpbid φ M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
78 77 simpld φ M 1 N Q M 1 M 1 N B
79 77 simprd φ M 1 N F Q M 1 M 1 N = G M 1 N
80 14 adantl φ M 1 N M
81 80 nnred φ M 1 N M
82 peano2rem M M 1
83 81 82 syl φ M 1 N M 1
84 8 adantr φ M 1 N N
85 83 84 nndivred φ M 1 N M 1 N
86 85 rexrd φ M 1 N M 1 N *
87 81 84 nndivred φ M 1 N M N
88 87 rexrd φ M 1 N M N *
89 81 ltm1d φ M 1 N M 1 < M
90 84 nnred φ M 1 N N
91 84 nngt0d φ M 1 N 0 < N
92 ltdiv1 M 1 M N 0 < N M 1 < M M 1 N < M N
93 83 81 90 91 92 syl112anc φ M 1 N M 1 < M M 1 N < M N
94 89 93 mpbid φ M 1 N M 1 N < M N
95 85 87 94 ltled φ M 1 N M 1 N M N
96 lbicc2 M 1 N * M N * M 1 N M N M 1 N M 1 N M N
97 86 88 95 96 syl3anc φ M 1 N M 1 N M 1 N M N
98 97 13 eleqtrrdi φ M 1 N M 1 N W
99 1 2 3 4 5 6 7 8 9 10 11 23 13 98 cvmliftlem3 φ M 1 N G M 1 N 1 st T M
100 79 99 eqeltrd φ M 1 N F Q M 1 M 1 N 1 st T M
101 eqid ι b 2 nd T M | Q M 1 M 1 N b = ι b 2 nd T M | Q M 1 M 1 N b
102 1 2 101 cvmsiota F C CovMap J 2 nd T M S 1 st T M Q M 1 M 1 N B F Q M 1 M 1 N 1 st T M ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
103 17 62 78 100 102 syl13anc φ M 1 N ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
104 103 simpld φ M 1 N ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M
105 1 cvmshmeo 2 nd T M S 1 st T M ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M F ι b 2 nd T M | Q M 1 M 1 N b C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b Homeo J 𝑡 1 st T M
106 62 104 105 syl2anc φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b Homeo J 𝑡 1 st T M
107 hmeocnvcn F ι b 2 nd T M | Q M 1 M 1 N b C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b Homeo J 𝑡 1 st T M F ι b 2 nd T M | Q M 1 M 1 N b -1 J 𝑡 1 st T M Cn C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b
108 106 107 syl φ M 1 N F ι b 2 nd T M | Q M 1 M 1 N b -1 J 𝑡 1 st T M Cn C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b
109 28 69 108 cnmpt11f φ M 1 N z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z L 𝑡 W Cn C 𝑡 ι b 2 nd T M | Q M 1 M 1 N b
110 20 109 sseldd φ M 1 N z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z L 𝑡 W Cn C
111 16 110 eqeltrd φ M 1 N Q M L 𝑡 W Cn C