Metamath Proof Explorer


Theorem cvmliftlem8

Description: Lemma for cvmlift . The functions Q are continuous functions because they are defined as ` ``' ( F |`I ) o. G where G is continuous and ` ( F |`I ) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem5.3 W=M1NMN
Assertion cvmliftlem8 φM1NQML𝑡WCnC

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem5.3 W=M1NMN
14 elfznn M1NM
15 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem5 φMQM=zWFιb2ndTM|QM1M1Nb-1Gz
16 14 15 sylan2 φM1NQM=zWFιb2ndTM|QM1M1Nb-1Gz
17 4 adantr φM1NFCCovMapJ
18 cvmtop1 FCCovMapJCTop
19 cnrest2r CTopL𝑡WCnC𝑡ιb2ndTM|QM1M1NbL𝑡WCnC
20 17 18 19 3syl φM1NL𝑡WCnC𝑡ιb2ndTM|QM1M1NbL𝑡WCnC
21 retopon topGenran.TopOn
22 11 21 eqeltri LTopOn
23 simpr φM1NM1N
24 1 2 3 4 5 6 7 8 9 10 11 23 13 cvmliftlem2 φM1NW01
25 unitssre 01
26 24 25 sstrdi φM1NW
27 resttopon LTopOnWL𝑡WTopOnW
28 22 26 27 sylancr φM1NL𝑡WTopOnW
29 eqid II𝑡W=II𝑡W
30 iitopon IITopOn01
31 30 a1i φM1NIITopOn01
32 5 adantr φM1NGIICnJ
33 iiuni 01=II
34 33 3 cnf GIICnJG:01X
35 32 34 syl φM1NG:01X
36 35 feqmptd φM1NG=z01Gz
37 36 32 eqeltrrd φM1Nz01GzIICnJ
38 29 31 24 37 cnmpt1res φM1NzWGzII𝑡WCnJ
39 dfii2 II=topGenran.𝑡01
40 11 oveq1i L𝑡01=topGenran.𝑡01
41 39 40 eqtr4i II=L𝑡01
42 41 oveq1i II𝑡W=L𝑡01𝑡W
43 retop topGenran.Top
44 11 43 eqeltri LTop
45 44 a1i φM1NLTop
46 ovexd φM1N01V
47 restabs LTopW0101VL𝑡01𝑡W=L𝑡W
48 45 24 46 47 syl3anc φM1NL𝑡01𝑡W=L𝑡W
49 42 48 eqtrid φM1NII𝑡W=L𝑡W
50 49 oveq1d φM1NII𝑡WCnJ=L𝑡WCnJ
51 38 50 eleqtrd φM1NzWGzL𝑡WCnJ
52 cvmtop2 FCCovMapJJTop
53 17 52 syl φM1NJTop
54 3 toptopon JTopJTopOnX
55 53 54 sylib φM1NJTopOnX
56 simprl φM1NzWM1N
57 simprr φM1NzWzW
58 1 2 3 4 5 6 7 8 9 10 11 56 13 57 cvmliftlem3 φM1NzWGz1stTM
59 58 anassrs φM1NzWGz1stTM
60 59 fmpttd φM1NzWGz:W1stTM
61 60 frnd φM1NranzWGz1stTM
62 1 2 3 4 5 6 7 8 9 10 11 23 cvmliftlem1 φM1N2ndTMS1stTM
63 1 cvmsrcl 2ndTMS1stTM1stTMJ
64 elssuni 1stTMJ1stTMJ
65 62 63 64 3syl φM1N1stTMJ
66 65 3 sseqtrrdi φM1N1stTMX
67 cnrest2 JTopOnXranzWGz1stTM1stTMXzWGzL𝑡WCnJzWGzL𝑡WCnJ𝑡1stTM
68 55 61 66 67 syl3anc φM1NzWGzL𝑡WCnJzWGzL𝑡WCnJ𝑡1stTM
69 51 68 mpbid φM1NzWGzL𝑡WCnJ𝑡1stTM
70 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem7 φM1NQM1M1NF-1GM1N
71 cvmcn FCCovMapJFCCnJ
72 2 3 cnf FCCnJF:BX
73 17 71 72 3syl φM1NF:BX
74 ffn F:BXFFnB
75 fniniseg FFnBQM1M1NF-1GM1NQM1M1NBFQM1M1N=GM1N
76 73 74 75 3syl φM1NQM1M1NF-1GM1NQM1M1NBFQM1M1N=GM1N
77 70 76 mpbid φM1NQM1M1NBFQM1M1N=GM1N
78 77 simpld φM1NQM1M1NB
79 77 simprd φM1NFQM1M1N=GM1N
80 14 adantl φM1NM
81 80 nnred φM1NM
82 peano2rem MM1
83 81 82 syl φM1NM1
84 8 adantr φM1NN
85 83 84 nndivred φM1NM1N
86 85 rexrd φM1NM1N*
87 81 84 nndivred φM1NMN
88 87 rexrd φM1NMN*
89 81 ltm1d φM1NM1<M
90 84 nnred φM1NN
91 84 nngt0d φM1N0<N
92 ltdiv1 M1MN0<NM1<MM1N<MN
93 83 81 90 91 92 syl112anc φM1NM1<MM1N<MN
94 89 93 mpbid φM1NM1N<MN
95 85 87 94 ltled φM1NM1NMN
96 lbicc2 M1N*MN*M1NMNM1NM1NMN
97 86 88 95 96 syl3anc φM1NM1NM1NMN
98 97 13 eleqtrrdi φM1NM1NW
99 1 2 3 4 5 6 7 8 9 10 11 23 13 98 cvmliftlem3 φM1NGM1N1stTM
100 79 99 eqeltrd φM1NFQM1M1N1stTM
101 eqid ιb2ndTM|QM1M1Nb=ιb2ndTM|QM1M1Nb
102 1 2 101 cvmsiota FCCovMapJ2ndTMS1stTMQM1M1NBFQM1M1N1stTMιb2ndTM|QM1M1Nb2ndTMQM1M1Nιb2ndTM|QM1M1Nb
103 17 62 78 100 102 syl13anc φM1Nιb2ndTM|QM1M1Nb2ndTMQM1M1Nιb2ndTM|QM1M1Nb
104 103 simpld φM1Nιb2ndTM|QM1M1Nb2ndTM
105 1 cvmshmeo 2ndTMS1stTMιb2ndTM|QM1M1Nb2ndTMFιb2ndTM|QM1M1NbC𝑡ιb2ndTM|QM1M1NbHomeoJ𝑡1stTM
106 62 104 105 syl2anc φM1NFιb2ndTM|QM1M1NbC𝑡ιb2ndTM|QM1M1NbHomeoJ𝑡1stTM
107 hmeocnvcn Fιb2ndTM|QM1M1NbC𝑡ιb2ndTM|QM1M1NbHomeoJ𝑡1stTMFιb2ndTM|QM1M1Nb-1J𝑡1stTMCnC𝑡ιb2ndTM|QM1M1Nb
108 106 107 syl φM1NFιb2ndTM|QM1M1Nb-1J𝑡1stTMCnC𝑡ιb2ndTM|QM1M1Nb
109 28 69 108 cnmpt11f φM1NzWFιb2ndTM|QM1M1Nb-1GzL𝑡WCnC𝑡ιb2ndTM|QM1M1Nb
110 20 109 sseldd φM1NzWFιb2ndTM|QM1M1Nb-1GzL𝑡WCnC
111 16 110 eqeltrd φM1NQML𝑡WCnC