| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|
| 2 |
|
cvmliftlem.b |
|
| 3 |
|
cvmliftlem.x |
|
| 4 |
|
cvmliftlem.f |
|
| 5 |
|
cvmliftlem.g |
|
| 6 |
|
cvmliftlem.p |
|
| 7 |
|
cvmliftlem.e |
|
| 8 |
|
cvmliftlem.n |
|
| 9 |
|
cvmliftlem.t |
|
| 10 |
|
cvmliftlem.a |
|
| 11 |
|
cvmliftlem.l |
|
| 12 |
|
cvmliftlem.q |
|
| 13 |
|
cvmliftlem5.3 |
|
| 14 |
|
elfznn |
|
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem5 |
|
| 16 |
14 15
|
sylan2 |
|
| 17 |
4
|
adantr |
|
| 18 |
|
cvmtop1 |
|
| 19 |
|
cnrest2r |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
|
retopon |
|
| 22 |
11 21
|
eqeltri |
|
| 23 |
|
simpr |
|
| 24 |
1 2 3 4 5 6 7 8 9 10 11 23 13
|
cvmliftlem2 |
|
| 25 |
|
unitssre |
|
| 26 |
24 25
|
sstrdi |
|
| 27 |
|
resttopon |
|
| 28 |
22 26 27
|
sylancr |
|
| 29 |
|
eqid |
|
| 30 |
|
iitopon |
|
| 31 |
30
|
a1i |
|
| 32 |
5
|
adantr |
|
| 33 |
|
iiuni |
|
| 34 |
33 3
|
cnf |
|
| 35 |
32 34
|
syl |
|
| 36 |
35
|
feqmptd |
|
| 37 |
36 32
|
eqeltrrd |
|
| 38 |
29 31 24 37
|
cnmpt1res |
|
| 39 |
|
dfii2 |
|
| 40 |
11
|
oveq1i |
|
| 41 |
39 40
|
eqtr4i |
|
| 42 |
41
|
oveq1i |
|
| 43 |
|
retop |
|
| 44 |
11 43
|
eqeltri |
|
| 45 |
44
|
a1i |
|
| 46 |
|
ovexd |
|
| 47 |
|
restabs |
|
| 48 |
45 24 46 47
|
syl3anc |
|
| 49 |
42 48
|
eqtrid |
|
| 50 |
49
|
oveq1d |
|
| 51 |
38 50
|
eleqtrd |
|
| 52 |
|
cvmtop2 |
|
| 53 |
17 52
|
syl |
|
| 54 |
3
|
toptopon |
|
| 55 |
53 54
|
sylib |
|
| 56 |
|
simprl |
|
| 57 |
|
simprr |
|
| 58 |
1 2 3 4 5 6 7 8 9 10 11 56 13 57
|
cvmliftlem3 |
|
| 59 |
58
|
anassrs |
|
| 60 |
59
|
fmpttd |
|
| 61 |
60
|
frnd |
|
| 62 |
1 2 3 4 5 6 7 8 9 10 11 23
|
cvmliftlem1 |
|
| 63 |
1
|
cvmsrcl |
|
| 64 |
|
elssuni |
|
| 65 |
62 63 64
|
3syl |
|
| 66 |
65 3
|
sseqtrrdi |
|
| 67 |
|
cnrest2 |
|
| 68 |
55 61 66 67
|
syl3anc |
|
| 69 |
51 68
|
mpbid |
|
| 70 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem7 |
|
| 71 |
|
cvmcn |
|
| 72 |
2 3
|
cnf |
|
| 73 |
17 71 72
|
3syl |
|
| 74 |
|
ffn |
|
| 75 |
|
fniniseg |
|
| 76 |
73 74 75
|
3syl |
|
| 77 |
70 76
|
mpbid |
|
| 78 |
77
|
simpld |
|
| 79 |
77
|
simprd |
|
| 80 |
14
|
adantl |
|
| 81 |
80
|
nnred |
|
| 82 |
|
peano2rem |
|
| 83 |
81 82
|
syl |
|
| 84 |
8
|
adantr |
|
| 85 |
83 84
|
nndivred |
|
| 86 |
85
|
rexrd |
|
| 87 |
81 84
|
nndivred |
|
| 88 |
87
|
rexrd |
|
| 89 |
81
|
ltm1d |
|
| 90 |
84
|
nnred |
|
| 91 |
84
|
nngt0d |
|
| 92 |
|
ltdiv1 |
|
| 93 |
83 81 90 91 92
|
syl112anc |
|
| 94 |
89 93
|
mpbid |
|
| 95 |
85 87 94
|
ltled |
|
| 96 |
|
lbicc2 |
|
| 97 |
86 88 95 96
|
syl3anc |
|
| 98 |
97 13
|
eleqtrrdi |
|
| 99 |
1 2 3 4 5 6 7 8 9 10 11 23 13 98
|
cvmliftlem3 |
|
| 100 |
79 99
|
eqeltrd |
|
| 101 |
|
eqid |
|
| 102 |
1 2 101
|
cvmsiota |
|
| 103 |
17 62 78 100 102
|
syl13anc |
|
| 104 |
103
|
simpld |
|
| 105 |
1
|
cvmshmeo |
|
| 106 |
62 104 105
|
syl2anc |
|
| 107 |
|
hmeocnvcn |
|
| 108 |
106 107
|
syl |
|
| 109 |
28 69 108
|
cnmpt11f |
|
| 110 |
20 109
|
sseldd |
|
| 111 |
16 110
|
eqeltrd |
|