Metamath Proof Explorer


Theorem dvrec

Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion dvrec Adx0Axdx=x0Ax2

Proof

Step Hyp Ref Expression
1 dvfcn dx0Axdx:domdx0Axdx
2 ssidd A
3 eldifsn x0xx0
4 divcl Axx0Ax
5 4 3expb Axx0Ax
6 3 5 sylan2b Ax0Ax
7 6 fmpttd Ax0Ax:0
8 difssd A0
9 2 7 8 dvbss Adomdx0Axdx0
10 simpr Ay0y0
11 eqid TopOpenfld=TopOpenfld
12 11 cnfldtop TopOpenfldTop
13 11 cnfldhaus TopOpenfldHaus
14 0cn 0
15 unicntop =TopOpenfld
16 15 sncld TopOpenfldHaus00ClsdTopOpenfld
17 13 14 16 mp2an 0ClsdTopOpenfld
18 15 cldopn 0ClsdTopOpenfld0TopOpenfld
19 17 18 ax-mp 0TopOpenfld
20 isopn3i TopOpenfldTop0TopOpenfldintTopOpenfld0=0
21 12 19 20 mp2an intTopOpenfld0=0
22 10 21 eleqtrrdi Ay0yintTopOpenfld0
23 eldifi y0y
24 23 adantl Ay0y
25 24 sqvald Ay0y2=yy
26 25 oveq2d Ay0Ay2=Ayy
27 simpl Ay0A
28 eldifsni y0y0
29 28 adantl Ay0y0
30 27 24 24 29 29 divdiv1d Ay0Ayy=Ayy
31 26 30 eqtr4d Ay0Ay2=Ayy
32 31 negeqd Ay0Ay2=Ayy
33 27 24 29 divcld Ay0Ay
34 33 24 29 divnegd Ay0Ayy=Ayy
35 32 34 eqtrd Ay0Ay2=Ayy
36 33 negcld Ay0Ay
37 eqid z0Ayz=z0Ayz
38 37 cdivcncf Ayz0Ayz:0cn
39 36 38 syl Ay0z0Ayz:0cn
40 oveq2 z=yAyz=Ayy
41 39 10 40 cnmptlimc Ay0Ayyz0Ayzlimy
42 35 41 eqeltrd Ay0Ay2z0Ayzlimy
43 cncff z0Ayz:0cnz0Ayz:0
44 39 43 syl Ay0z0Ayz:0
45 44 limcdif Ay0z0Ayzlimy=z0Ayz0ylimy
46 eldifi z0yz0
47 46 adantl Ay0z0yz0
48 47 eldifad Ay0z0yz
49 23 ad2antlr Ay0z0yy
50 48 49 subcld Ay0z0yzy
51 33 adantr Ay0z0yAy
52 eldifsni z0z0
53 47 52 syl Ay0z0yz0
54 51 48 53 divcld Ay0z0yAyz
55 mulneg12 zyAyzzyAyz=zyAyz
56 50 54 55 syl2anc Ay0z0yzyAyz=zyAyz
57 49 48 54 subdird Ay0z0yyzAyz=yAyzzAyz
58 48 49 negsubdi2d Ay0z0yzy=yz
59 58 oveq1d Ay0z0yzyAyz=yzAyz
60 oveq2 x=zAx=Az
61 eqid x0Ax=x0Ax
62 ovex AzV
63 60 61 62 fvmpt z0x0Axz=Az
64 47 63 syl Ay0z0yx0Axz=Az
65 simpll Ay0z0yA
66 28 ad2antlr Ay0z0yy0
67 65 49 66 divcan2d Ay0z0yyAy=A
68 67 oveq1d Ay0z0yyAyz=Az
69 49 51 48 53 divassd Ay0z0yyAyz=yAyz
70 64 68 69 3eqtr2d Ay0z0yx0Axz=yAyz
71 oveq2 x=yAx=Ay
72 ovex AyV
73 71 61 72 fvmpt y0x0Axy=Ay
74 73 ad2antlr Ay0z0yx0Axy=Ay
75 51 48 53 divcan2d Ay0z0yzAyz=Ay
76 74 75 eqtr4d Ay0z0yx0Axy=zAyz
77 70 76 oveq12d Ay0z0yx0Axzx0Axy=yAyzzAyz
78 57 59 77 3eqtr4d Ay0z0yzyAyz=x0Axzx0Axy
79 51 48 53 divnegd Ay0z0yAyz=Ayz
80 79 oveq2d Ay0z0yzyAyz=zyAyz
81 56 78 80 3eqtr3d Ay0z0yx0Axzx0Axy=zyAyz
82 81 oveq1d Ay0z0yx0Axzx0Axyzy=zyAyzzy
83 51 negcld Ay0z0yAy
84 83 48 53 divcld Ay0z0yAyz
85 eldifsni z0yzy
86 85 adantl Ay0z0yzy
87 48 49 86 subne0d Ay0z0yzy0
88 84 50 87 divcan3d Ay0z0yzyAyzzy=Ayz
89 82 88 eqtrd Ay0z0yx0Axzx0Axyzy=Ayz
90 89 mpteq2dva Ay0z0yx0Axzx0Axyzy=z0yAyz
91 difss 0y0
92 resmpt 0y0z0Ayz0y=z0yAyz
93 91 92 ax-mp z0Ayz0y=z0yAyz
94 90 93 eqtr4di Ay0z0yx0Axzx0Axyzy=z0Ayz0y
95 94 oveq1d Ay0z0yx0Axzx0Axyzylimy=z0Ayz0ylimy
96 45 95 eqtr4d Ay0z0Ayzlimy=z0yx0Axzx0Axyzylimy
97 42 96 eleqtrd Ay0Ay2z0yx0Axzx0Axyzylimy
98 11 cnfldtopon TopOpenfldTopOn
99 98 toponrestid TopOpenfld=TopOpenfld𝑡
100 eqid z0yx0Axzx0Axyzy=z0yx0Axzx0Axyzy
101 ssidd Ay0
102 7 adantr Ay0x0Ax:0
103 difssd Ay00
104 99 11 100 101 102 103 eldv Ay0ydx0AxdxAy2yintTopOpenfld0Ay2z0yx0Axzx0Axyzylimy
105 22 97 104 mpbir2and Ay0ydx0AxdxAy2
106 vex yV
107 negex Ay2V
108 106 107 breldm ydx0AxdxAy2ydomdx0Axdx
109 105 108 syl Ay0ydomdx0Axdx
110 9 109 eqelssd Adomdx0Axdx=0
111 110 feq2d Adx0Axdx:domdx0Axdxdx0Axdx:0
112 1 111 mpbii Adx0Axdx:0
113 112 ffnd Adx0AxdxFn0
114 negex Ax2V
115 114 rgenw x0Ax2V
116 eqid x0Ax2=x0Ax2
117 116 fnmpt x0Ax2Vx0Ax2Fn0
118 115 117 mp1i Ax0Ax2Fn0
119 ffun dx0Axdx:domdx0AxdxFundx0Axdx
120 1 119 mp1i Ay0Fundx0Axdx
121 funbrfv Fundx0Axdxydx0AxdxAy2dx0Axdxy=Ay2
122 120 105 121 sylc Ay0dx0Axdxy=Ay2
123 oveq1 x=yx2=y2
124 123 oveq2d x=yAx2=Ay2
125 124 negeqd x=yAx2=Ay2
126 125 116 107 fvmpt y0x0Ax2y=Ay2
127 126 adantl Ay0x0Ax2y=Ay2
128 122 127 eqtr4d Ay0dx0Axdxy=x0Ax2y
129 113 118 128 eqfnfvd Adx0Axdx=x0Ax2