Metamath Proof Explorer


Theorem efopn

Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis efopn.j J=TopOpenfld
Assertion efopn SJexpSJ

Proof

Step Hyp Ref Expression
1 efopn.j J=TopOpenfld
2 1 cnfldtopon JTopOn
3 toponss JTopOnSJS
4 2 3 mpan SJS
5 4 sselda SJxSx
6 cnxmet abs∞Met
7 pirp π+
8 1 cnfldtopn J=MetOpenabs
9 8 mopni3 abs∞MetSJxSπ+r+r<πxballabsrS
10 7 9 mpan2 abs∞MetSJxSr+r<πxballabsrS
11 6 10 mp3an1 SJxSr+r<πxballabsrS
12 imass2 xballabsrSexpxballabsrexpS
13 imassrn expxballabsrranexp
14 eff exp:
15 frn exp:ranexp
16 14 15 ax-mp ranexp
17 13 16 sstri expxballabsr
18 sseqin2 expxballabsrexpxballabsr=expxballabsr
19 17 18 mpbi expxballabsr=expxballabsr
20 rpxr r+r*
21 blssm abs∞Metxr*xballabsr
22 6 21 mp3an1 xr*xballabsr
23 20 22 sylan2 xr+xballabsr
24 23 ad2antrr xr+r<πzxballabsr
25 24 sselda xr+r<πzyxballabsry
26 simp-4l xr+r<πzyxballabsrx
27 25 26 subcld xr+r<πzyxballabsryx
28 27 subid1d xr+r<πzyxballabsry-x-0=yx
29 28 fveq2d xr+r<πzyxballabsry-x-0=yx
30 0cn 0
31 eqid abs=abs
32 31 cnmetdval yx0yxabs0=y-x-0
33 27 30 32 sylancl xr+r<πzyxballabsryxabs0=y-x-0
34 31 cnmetdval yxyabsx=yx
35 25 26 34 syl2anc xr+r<πzyxballabsryabsx=yx
36 29 33 35 3eqtr4d xr+r<πzyxballabsryxabs0=yabsx
37 simpr xr+r<πzyxballabsryxballabsr
38 6 a1i xr+r<πzyxballabsrabs∞Met
39 simpllr xr+r<πzr+
40 39 adantr xr+r<πzyxballabsrr+
41 40 rpxrd xr+r<πzyxballabsrr*
42 elbl3 abs∞Metr*xyyxballabsryabsx<r
43 38 41 26 25 42 syl22anc xr+r<πzyxballabsryxballabsryabsx<r
44 37 43 mpbid xr+r<πzyxballabsryabsx<r
45 36 44 eqbrtrd xr+r<πzyxballabsryxabs0<r
46 0cnd xr+r<πzyxballabsr0
47 elbl3 abs∞Metr*0yxyx0ballabsryxabs0<r
48 38 41 46 27 47 syl22anc xr+r<πzyxballabsryx0ballabsryxabs0<r
49 45 48 mpbird xr+r<πzyxballabsryx0ballabsr
50 efsub yxeyx=eyex
51 25 26 50 syl2anc xr+r<πzyxballabsreyx=eyex
52 fveqeq2 w=yxew=eyexeyx=eyex
53 52 rspcev yx0ballabsreyx=eyexw0ballabsrew=eyex
54 49 51 53 syl2anc xr+r<πzyxballabsrw0ballabsrew=eyex
55 oveq1 ey=zeyex=zex
56 55 eqeq2d ey=zew=eyexew=zex
57 56 rexbidv ey=zw0ballabsrew=eyexw0ballabsrew=zex
58 54 57 syl5ibcom xr+r<πzyxballabsrey=zw0ballabsrew=zex
59 58 rexlimdva xr+r<πzyxballabsrey=zw0ballabsrew=zex
60 eqcom ew=zexzex=ew
61 simplr xr+r<πzw0ballabsrz
62 simp-4l xr+r<πzw0ballabsrx
63 efcl xex
64 62 63 syl xr+r<πzw0ballabsrex
65 39 rpxrd xr+r<πzr*
66 blssm abs∞Met0r*0ballabsr
67 6 30 65 66 mp3an12i xr+r<πz0ballabsr
68 67 sselda xr+r<πzw0ballabsrw
69 efcl wew
70 68 69 syl xr+r<πzw0ballabsrew
71 efne0 xex0
72 62 71 syl xr+r<πzw0ballabsrex0
73 61 64 70 72 divmuld xr+r<πzw0ballabsrzex=ewexew=z
74 60 73 bitrid xr+r<πzw0ballabsrew=zexexew=z
75 62 68 pncan2d xr+r<πzw0ballabsrx+w-x=w
76 68 subid1d xr+r<πzw0ballabsrw0=w
77 75 76 eqtr4d xr+r<πzw0ballabsrx+w-x=w0
78 77 fveq2d xr+r<πzw0ballabsrx+w-x=w0
79 62 68 addcld xr+r<πzw0ballabsrx+w
80 31 cnmetdval x+wxx+wabsx=x+w-x
81 79 62 80 syl2anc xr+r<πzw0ballabsrx+wabsx=x+w-x
82 31 cnmetdval w0wabs0=w0
83 68 30 82 sylancl xr+r<πzw0ballabsrwabs0=w0
84 78 81 83 3eqtr4d xr+r<πzw0ballabsrx+wabsx=wabs0
85 simpr xr+r<πzw0ballabsrw0ballabsr
86 6 a1i xr+r<πzw0ballabsrabs∞Met
87 39 adantr xr+r<πzw0ballabsrr+
88 87 rpxrd xr+r<πzw0ballabsrr*
89 0cnd xr+r<πzw0ballabsr0
90 elbl3 abs∞Metr*0ww0ballabsrwabs0<r
91 86 88 89 68 90 syl22anc xr+r<πzw0ballabsrw0ballabsrwabs0<r
92 85 91 mpbid xr+r<πzw0ballabsrwabs0<r
93 84 92 eqbrtrd xr+r<πzw0ballabsrx+wabsx<r
94 elbl3 abs∞Metr*xx+wx+wxballabsrx+wabsx<r
95 86 88 62 79 94 syl22anc xr+r<πzw0ballabsrx+wxballabsrx+wabsx<r
96 93 95 mpbird xr+r<πzw0ballabsrx+wxballabsr
97 efadd xwex+w=exew
98 62 68 97 syl2anc xr+r<πzw0ballabsrex+w=exew
99 fveqeq2 y=x+wey=exewex+w=exew
100 99 rspcev x+wxballabsrex+w=exewyxballabsrey=exew
101 96 98 100 syl2anc xr+r<πzw0ballabsryxballabsrey=exew
102 eqeq2 exew=zey=exewey=z
103 102 rexbidv exew=zyxballabsrey=exewyxballabsrey=z
104 101 103 syl5ibcom xr+r<πzw0ballabsrexew=zyxballabsrey=z
105 74 104 sylbid xr+r<πzw0ballabsrew=zexyxballabsrey=z
106 105 rexlimdva xr+r<πzw0ballabsrew=zexyxballabsrey=z
107 59 106 impbid xr+r<πzyxballabsrey=zw0ballabsrew=zex
108 ffn exp:expFn
109 14 108 ax-mp expFn
110 fvelimab expFnxballabsrzexpxballabsryxballabsrey=z
111 109 24 110 sylancr xr+r<πzzexpxballabsryxballabsrey=z
112 fvelimab expFn0ballabsrzexexp0ballabsrw0ballabsrew=zex
113 109 67 112 sylancr xr+r<πzzexexp0ballabsrw0ballabsrew=zex
114 107 111 113 3bitr4d xr+r<πzzexpxballabsrzexexp0ballabsr
115 114 rabbi2dva xr+r<πexpxballabsr=z|zexexp0ballabsr
116 19 115 eqtr3id xr+r<πexpxballabsr=z|zexexp0ballabsr
117 eqid zzex=zzex
118 117 mptpreima zzex-1exp0ballabsr=z|zexexp0ballabsr
119 116 118 eqtr4di xr+r<πexpxballabsr=zzex-1exp0ballabsr
120 63 ad2antrr xr+r<πex
121 71 ad2antrr xr+r<πex0
122 117 divccncf exex0zzex:cn
123 120 121 122 syl2anc xr+r<πzzex:cn
124 1 cncfcn1 cn=JCnJ
125 123 124 eleqtrdi xr+r<πzzexJCnJ
126 1 efopnlem2 r+r<πexp0ballabsrJ
127 126 adantll xr+r<πexp0ballabsrJ
128 cnima zzexJCnJexp0ballabsrJzzex-1exp0ballabsrJ
129 125 127 128 syl2anc xr+r<πzzex-1exp0ballabsrJ
130 119 129 eqeltrd xr+r<πexpxballabsrJ
131 blcntr abs∞Metxr+xxballabsr
132 6 131 mp3an1 xr+xxballabsr
133 ffun exp:Funexp
134 14 133 ax-mp Funexp
135 14 fdmi domexp=
136 23 135 sseqtrrdi xr+xballabsrdomexp
137 funfvima2 Funexpxballabsrdomexpxxballabsrexexpxballabsr
138 134 136 137 sylancr xr+xxballabsrexexpxballabsr
139 132 138 mpd xr+exexpxballabsr
140 139 adantr xr+r<πexexpxballabsr
141 eleq2 y=expxballabsrexyexexpxballabsr
142 sseq1 y=expxballabsryexpSexpxballabsrexpS
143 141 142 anbi12d y=expxballabsrexyyexpSexexpxballabsrexpxballabsrexpS
144 143 rspcev expxballabsrJexexpxballabsrexpxballabsrexpSyJexyyexpS
145 144 expr expxballabsrJexexpxballabsrexpxballabsrexpSyJexyyexpS
146 130 140 145 syl2anc xr+r<πexpxballabsrexpSyJexyyexpS
147 12 146 syl5 xr+r<πxballabsrSyJexyyexpS
148 147 expimpd xr+r<πxballabsrSyJexyyexpS
149 148 rexlimdva xr+r<πxballabsrSyJexyyexpS
150 5 11 149 sylc SJxSyJexyyexpS
151 150 ralrimiva SJxSyJexyyexpS
152 eleq1 z=exzyexy
153 152 anbi1d z=exzyyexpSexyyexpS
154 153 rexbidv z=exyJzyyexpSyJexyyexpS
155 154 ralima expFnSzexpSyJzyyexpSxSyJexyyexpS
156 109 4 155 sylancr SJzexpSyJzyyexpSxSyJexyyexpS
157 151 156 mpbird SJzexpSyJzyyexpS
158 1 cnfldtop JTop
159 eltop2 JTopexpSJzexpSyJzyyexpS
160 158 159 ax-mp expSJzexpSyJzyyexpS
161 157 160 sylibr SJexpSJ