Metamath Proof Explorer


Theorem elqaalem2

Description: Lemma for elqaa . (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses elqaa.1 φA
elqaa.2 φFPoly0𝑝
elqaa.3 φFA=0
elqaa.4 B=coeffF
elqaa.5 N=k0supn|Bkn<
elqaa.6 R=seq0×NdegF
elqaa.7 P=xV,yVxymodNK
Assertion elqaalem2 φK0degFRmodNK=0

Proof

Step Hyp Ref Expression
1 elqaa.1 φA
2 elqaa.2 φFPoly0𝑝
3 elqaa.3 φFA=0
4 elqaa.4 B=coeffF
5 elqaa.5 N=k0supn|Bkn<
6 elqaa.6 R=seq0×NdegF
7 elqaa.7 P=xV,yVxymodNK
8 elfznn0 K0degFK0
9 6 fveq2i kkmodNKR=kkmodNKseq0×NdegF
10 nnmulcl ijij
11 10 adantl φK0ijij
12 elfznn0 i0degFi0
13 1 2 3 4 5 6 elqaalem1 φi0NiBiNi
14 13 simpld φi0Ni
15 14 adantlr φK0i0Ni
16 12 15 sylan2 φK0i0degFNi
17 eldifi FPoly0𝑝FPoly
18 dgrcl FPolydegF0
19 2 17 18 3syl φdegF0
20 nn0uz 0=0
21 19 20 eleqtrdi φdegF0
22 21 adantr φK0degF0
23 nnz ii
24 23 ad2antrl φK0iji
25 1 2 3 4 5 6 elqaalem1 φK0NKBKNK
26 25 simpld φK0NK
27 26 adantr φK0ijNK
28 24 27 zmodcld φK0ijimodNK0
29 28 nn0zd φK0ijimodNK
30 nnz jj
31 30 ad2antll φK0ijj
32 31 27 zmodcld φK0ijjmodNK0
33 32 nn0zd φK0ijjmodNK
34 27 nnrpd φK0ijNK+
35 nnre ii
36 35 ad2antrl φK0iji
37 modabs2 iNK+imodNKmodNK=imodNK
38 36 34 37 syl2anc φK0ijimodNKmodNK=imodNK
39 nnre jj
40 39 ad2antll φK0ijj
41 modabs2 jNK+jmodNKmodNK=jmodNK
42 40 34 41 syl2anc φK0ijjmodNKmodNK=jmodNK
43 29 24 33 31 34 38 42 modmul12d φK0ijimodNKjmodNKmodNK=ijmodNK
44 oveq1 k=ikmodNK=imodNK
45 eqid kkmodNK=kkmodNK
46 ovex imodNKV
47 44 45 46 fvmpt ikkmodNKi=imodNK
48 47 ad2antrl φK0ijkkmodNKi=imodNK
49 oveq1 k=jkmodNK=jmodNK
50 ovex jmodNKV
51 49 45 50 fvmpt jkkmodNKj=jmodNK
52 51 ad2antll φK0ijkkmodNKj=jmodNK
53 48 52 oveq12d φK0ijkkmodNKiPkkmodNKj=imodNKPjmodNK
54 oveq12 x=imodNKy=jmodNKxy=imodNKjmodNK
55 54 oveq1d x=imodNKy=jmodNKxymodNK=imodNKjmodNKmodNK
56 ovex imodNKjmodNKmodNKV
57 55 7 56 ovmpoa imodNKVjmodNKVimodNKPjmodNK=imodNKjmodNKmodNK
58 46 50 57 mp2an imodNKPjmodNK=imodNKjmodNKmodNK
59 53 58 eqtrdi φK0ijkkmodNKiPkkmodNKj=imodNKjmodNKmodNK
60 oveq1 k=ijkmodNK=ijmodNK
61 ovex ijmodNKV
62 60 45 61 fvmpt ijkkmodNKij=ijmodNK
63 11 62 syl φK0ijkkmodNKij=ijmodNK
64 43 59 63 3eqtr4rd φK0ijkkmodNKij=kkmodNKiPkkmodNKj
65 oveq1 k=NikmodNK=NimodNK
66 ovex NimodNKV
67 65 45 66 fvmpt NikkmodNKNi=NimodNK
68 15 67 syl φK0i0kkmodNKNi=NimodNK
69 fveq2 k=iNk=Ni
70 69 oveq1d k=iNkmodNK=NimodNK
71 eqid k0NkmodNK=k0NkmodNK
72 70 71 66 fvmpt i0k0NkmodNKi=NimodNK
73 72 adantl φK0i0k0NkmodNKi=NimodNK
74 68 73 eqtr4d φK0i0kkmodNKNi=k0NkmodNKi
75 12 74 sylan2 φK0i0degFkkmodNKNi=k0NkmodNKi
76 11 16 22 64 75 seqhomo φK0kkmodNKseq0×NdegF=seq0Pk0NkmodNKdegF
77 9 76 eqtrid φK0kkmodNKR=seq0Pk0NkmodNKdegF
78 8 77 sylan2 φK0degFkkmodNKR=seq0Pk0NkmodNKdegF
79 0zd φ0
80 10 adantl φijij
81 20 79 14 80 seqf φseq0×N:0
82 81 19 ffvelcdmd φseq0×NdegF
83 6 82 eqeltrid φR
84 83 adantr φK0R
85 oveq1 k=RkmodNK=RmodNK
86 ovex RmodNKV
87 85 45 86 fvmpt RkkmodNKR=RmodNK
88 84 87 syl φK0kkmodNKR=RmodNK
89 8 88 sylan2 φK0degFkkmodNKR=RmodNK
90 oveq12 x=iy=jxy=ij
91 90 oveq1d x=iy=jxymodNK=ijmodNK
92 91 7 61 ovmpoa iVjViPj=ijmodNK
93 92 el2v iPj=ijmodNK
94 nn0mulcl i0j0ij0
95 94 nn0zd i0j0ij
96 8 26 sylan2 φK0degFNK
97 zmodcl ijNKijmodNK0
98 95 96 97 syl2anr φK0degFi0j0ijmodNK0
99 93 98 eqeltrid φK0degFi0j0iPj0
100 fveq2 k=mBk=Bm
101 100 oveq1d k=mBkn=Bmn
102 101 eleq1d k=mBknBmn
103 102 rabbidv k=mn|Bkn=n|Bmn
104 103 infeq1d k=msupn|Bkn<=supn|Bmn<
105 104 cbvmptv k0supn|Bkn<=m0supn|Bmn<
106 5 105 eqtri N=m0supn|Bmn<
107 1 2 3 4 106 6 elqaalem1 φk0NkBkNk
108 107 simpld φk0Nk
109 108 adantlr φK0k0Nk
110 109 nnzd φK0k0Nk
111 26 adantr φK0k0NK
112 110 111 zmodcld φK0k0NkmodNK0
113 112 fmpttd φK0k0NkmodNK:00
114 8 113 sylan2 φK0degFk0NkmodNK:00
115 ffvelcdm k0NkmodNK:00i0k0NkmodNKi0
116 114 12 115 syl2an φK0degFi0degFk0NkmodNKi0
117 c0ex 0V
118 vex iV
119 oveq12 x=0y=ixy=0i
120 119 oveq1d x=0y=ixymodNK=0imodNK
121 ovex 0imodNKV
122 120 7 121 ovmpoa 0ViV0Pi=0imodNK
123 117 118 122 mp2an 0Pi=0imodNK
124 nn0cn i0i
125 124 mul02d i00i=0
126 125 oveq1d i00imodNK=0modNK
127 96 nnrpd φK0degFNK+
128 0mod NK+0modNK=0
129 127 128 syl φK0degF0modNK=0
130 126 129 sylan9eqr φK0degFi00imodNK=0
131 123 130 eqtrid φK0degFi00Pi=0
132 oveq12 x=iy=0xy=i0
133 132 oveq1d x=iy=0xymodNK=i0modNK
134 ovex i0modNKV
135 133 7 134 ovmpoa iV0ViP0=i0modNK
136 118 117 135 mp2an iP0=i0modNK
137 124 mul01d i0i0=0
138 137 oveq1d i0i0modNK=0modNK
139 138 129 sylan9eqr φK0degFi0i0modNK=0
140 136 139 eqtrid φK0degFi0iP0=0
141 simpr φK0degFK0degF
142 19 adantr φK0degFdegF0
143 8 adantl φK0degFK0
144 fveq2 k=KNk=NK
145 144 oveq1d k=KNkmodNK=NKmodNK
146 ovex NKmodNKV
147 145 71 146 fvmpt K0k0NkmodNKK=NKmodNK
148 143 147 syl φK0degFk0NkmodNKK=NKmodNK
149 96 nncnd φK0degFNK
150 96 nnne0d φK0degFNK0
151 149 150 dividd φK0degFNKNK=1
152 1z 1
153 151 152 eqeltrdi φK0degFNKNK
154 96 nnred φK0degFNK
155 mod0 NKNK+NKmodNK=0NKNK
156 154 127 155 syl2anc φK0degFNKmodNK=0NKNK
157 153 156 mpbird φK0degFNKmodNK=0
158 148 157 eqtrd φK0degFk0NkmodNKK=0
159 99 116 131 140 141 142 158 seqz φK0degFseq0Pk0NkmodNKdegF=0
160 78 89 159 3eqtr3d φK0degFRmodNK=0