Metamath Proof Explorer


Theorem esumfsup

Description: Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017)

Ref Expression
Hypothesis esumfsup.1 _kF
Assertion esumfsup F:0+∞*kFk=supranseq1+𝑒F*<

Proof

Step Hyp Ref Expression
1 esumfsup.1 _kF
2 1z 1
3 seqfn 1seq1+𝑒FFn1
4 2 3 ax-mp seq1+𝑒FFn1
5 nnuz =1
6 5 fneq2i seq1+𝑒FFnseq1+𝑒FFn1
7 4 6 mpbir seq1+𝑒FFn
8 iccssxr 0+∞*
9 1 esumfzf F:0+∞n*k=1nFk=seq1+𝑒Fn
10 ovex 1nV
11 nfcv _k
12 nfcv _k0+∞
13 1 11 12 nff kF:0+∞
14 nfv kn
15 13 14 nfan kF:0+∞n
16 simpll F:0+∞nk1nF:0+∞
17 1nn 1
18 fzssnn 11n
19 17 18 mp1i F:0+∞nk1n1n
20 simpr F:0+∞nk1nk1n
21 19 20 sseldd F:0+∞nk1nk
22 16 21 ffvelcdmd F:0+∞nk1nFk0+∞
23 22 ex F:0+∞nk1nFk0+∞
24 15 23 ralrimi F:0+∞nk1nFk0+∞
25 nfcv _k1n
26 25 esumcl 1nVk1nFk0+∞*k=1nFk0+∞
27 10 24 26 sylancr F:0+∞n*k=1nFk0+∞
28 9 27 eqeltrrd F:0+∞nseq1+𝑒Fn0+∞
29 8 28 sselid F:0+∞nseq1+𝑒Fn*
30 29 ralrimiva F:0+∞nseq1+𝑒Fn*
31 fnfvrnss seq1+𝑒FFnnseq1+𝑒Fn*ranseq1+𝑒F*
32 7 30 31 sylancr F:0+∞ranseq1+𝑒F*
33 nnex V
34 ffvelcdm F:0+∞kFk0+∞
35 34 ex F:0+∞kFk0+∞
36 13 35 ralrimi F:0+∞kFk0+∞
37 11 esumcl VkFk0+∞*kFk0+∞
38 33 36 37 sylancr F:0+∞*kFk0+∞
39 8 38 sselid F:0+∞*kFk*
40 fvelrnb seq1+𝑒FFnxranseq1+𝑒Fnseq1+𝑒Fn=x
41 7 40 mp1i F:0+∞xranseq1+𝑒Fnseq1+𝑒Fn=x
42 eqcom *k=1nFk=xx=*k=1nFk
43 9 eqeq1d F:0+∞n*k=1nFk=xseq1+𝑒Fn=x
44 42 43 bitr3id F:0+∞nx=*k=1nFkseq1+𝑒Fn=x
45 44 rexbidva F:0+∞nx=*k=1nFknseq1+𝑒Fn=x
46 41 45 bitr4d F:0+∞xranseq1+𝑒Fnx=*k=1nFk
47 46 biimpa F:0+∞xranseq1+𝑒Fnx=*k=1nFk
48 33 a1i F:0+∞nV
49 34 adantlr F:0+∞nkFk0+∞
50 17 18 mp1i F:0+∞n1n
51 15 48 49 50 esummono F:0+∞n*k=1nFk*kFk
52 51 ralrimiva F:0+∞n*k=1nFk*kFk
53 52 adantr F:0+∞xranseq1+𝑒Fn*k=1nFk*kFk
54 47 53 jca F:0+∞xranseq1+𝑒Fnx=*k=1nFkn*k=1nFk*kFk
55 r19.29r nx=*k=1nFkn*k=1nFk*kFknx=*k=1nFk*k=1nFk*kFk
56 breq1 x=*k=1nFkx*kFk*k=1nFk*kFk
57 56 biimpar x=*k=1nFk*k=1nFk*kFkx*kFk
58 57 rexlimivw nx=*k=1nFk*k=1nFk*kFkx*kFk
59 54 55 58 3syl F:0+∞xranseq1+𝑒Fx*kFk
60 59 ralrimiva F:0+∞xranseq1+𝑒Fx*kFk
61 nfv kx
62 13 61 nfan kF:0+∞x
63 nfcv _kx
64 nfcv _k<
65 11 nfesum1 _k*kFk
66 63 64 65 nfbr kx<*kFk
67 62 66 nfan kF:0+∞xx<*kFk
68 33 a1i F:0+∞xx<*kFkV
69 simplll F:0+∞xx<*kFkkF:0+∞
70 69 34 sylancom F:0+∞xx<*kFkkFk0+∞
71 simplr F:0+∞xx<*kFkx
72 71 rexrd F:0+∞xx<*kFkx*
73 simpr F:0+∞xx<*kFkx<*kFk
74 67 68 70 72 73 esumlub F:0+∞xx<*kFka𝒫Finx<*kaFk
75 ssnnssfz a𝒫Finna1n
76 r19.42v nF:0+∞xx<*kFka1nF:0+∞xx<*kFkna1n
77 nfv ka1n
78 67 77 nfan kF:0+∞xx<*kFka1n
79 10 a1i F:0+∞xx<*kFka1n1nV
80 simp-4l F:0+∞xx<*kFka1nk1nF:0+∞
81 17 18 ax-mp 1n
82 simpr F:0+∞xx<*kFka1nk1nk1n
83 81 82 sselid F:0+∞xx<*kFka1nk1nk
84 80 83 ffvelcdmd F:0+∞xx<*kFka1nk1nFk0+∞
85 simpr F:0+∞xx<*kFka1na1n
86 78 79 84 85 esummono F:0+∞xx<*kFka1n*kaFk*k=1nFk
87 86 reximi nF:0+∞xx<*kFka1nn*kaFk*k=1nFk
88 76 87 sylbir F:0+∞xx<*kFkna1nn*kaFk*k=1nFk
89 75 88 sylan2 F:0+∞xx<*kFka𝒫Finn*kaFk*k=1nFk
90 89 ralrimiva F:0+∞xx<*kFka𝒫Finn*kaFk*k=1nFk
91 r19.29r a𝒫Finx<*kaFka𝒫Finn*kaFk*k=1nFka𝒫Finx<*kaFkn*kaFk*k=1nFk
92 r19.42v nx<*kaFk*kaFk*k=1nFkx<*kaFkn*kaFk*k=1nFk
93 92 rexbii a𝒫Finnx<*kaFk*kaFk*k=1nFka𝒫Finx<*kaFkn*kaFk*k=1nFk
94 91 93 sylibr a𝒫Finx<*kaFka𝒫Finn*kaFk*k=1nFka𝒫Finnx<*kaFk*kaFk*k=1nFk
95 74 90 94 syl2anc F:0+∞xx<*kFka𝒫Finnx<*kaFk*kaFk*k=1nFk
96 simp-4r F:0+∞xx<*kFka𝒫Finnx
97 96 rexrd F:0+∞xx<*kFka𝒫Finnx*
98 vex aV
99 nfcv _ka
100 99 nfel1 ka𝒫Fin
101 67 100 nfan kF:0+∞xx<*kFka𝒫Fin
102 101 14 nfan kF:0+∞xx<*kFka𝒫Finn
103 simp-5l F:0+∞xx<*kFka𝒫FinnkaF:0+∞
104 simpllr F:0+∞xx<*kFka𝒫Finnkaa𝒫Fin
105 inss1 𝒫Fin𝒫
106 105 sseli a𝒫Fina𝒫
107 elpwi a𝒫a
108 104 106 107 3syl F:0+∞xx<*kFka𝒫Finnkaa
109 simpr F:0+∞xx<*kFka𝒫Finnkaka
110 108 109 sseldd F:0+∞xx<*kFka𝒫Finnkak
111 103 110 ffvelcdmd F:0+∞xx<*kFka𝒫FinnkaFk0+∞
112 111 ex F:0+∞xx<*kFka𝒫FinnkaFk0+∞
113 102 112 ralrimi F:0+∞xx<*kFka𝒫FinnkaFk0+∞
114 99 esumcl aVkaFk0+∞*kaFk0+∞
115 98 113 114 sylancr F:0+∞xx<*kFka𝒫Finn*kaFk0+∞
116 8 115 sselid F:0+∞xx<*kFka𝒫Finn*kaFk*
117 simp-5l F:0+∞xx<*kFka𝒫Finnk1nF:0+∞
118 simpr F:0+∞xx<*kFka𝒫Finnk1nk1n
119 81 118 sselid F:0+∞xx<*kFka𝒫Finnk1nk
120 117 119 ffvelcdmd F:0+∞xx<*kFka𝒫Finnk1nFk0+∞
121 120 ex F:0+∞xx<*kFka𝒫Finnk1nFk0+∞
122 102 121 ralrimi F:0+∞xx<*kFka𝒫Finnk1nFk0+∞
123 10 122 26 sylancr F:0+∞xx<*kFka𝒫Finn*k=1nFk0+∞
124 8 123 sselid F:0+∞xx<*kFka𝒫Finn*k=1nFk*
125 xrltletr x**kaFk**k=1nFk*x<*kaFk*kaFk*k=1nFkx<*k=1nFk
126 97 116 124 125 syl3anc F:0+∞xx<*kFka𝒫Finnx<*kaFk*kaFk*k=1nFkx<*k=1nFk
127 126 reximdva F:0+∞xx<*kFka𝒫Finnx<*kaFk*kaFk*k=1nFknx<*k=1nFk
128 127 rexlimdva F:0+∞xx<*kFka𝒫Finnx<*kaFk*kaFk*k=1nFknx<*k=1nFk
129 95 128 mpd F:0+∞xx<*kFknx<*k=1nFk
130 fvelrnb seq1+𝑒FFnyranseq1+𝑒Fnseq1+𝑒Fn=y
131 7 130 mp1i F:0+∞yranseq1+𝑒Fnseq1+𝑒Fn=y
132 eqcom *k=1nFk=yy=*k=1nFk
133 9 eqeq1d F:0+∞n*k=1nFk=yseq1+𝑒Fn=y
134 132 133 bitr3id F:0+∞ny=*k=1nFkseq1+𝑒Fn=y
135 134 rexbidva F:0+∞ny=*k=1nFknseq1+𝑒Fn=y
136 131 135 bitr4d F:0+∞yranseq1+𝑒Fny=*k=1nFk
137 simpr F:0+∞y=*k=1nFky=*k=1nFk
138 137 breq2d F:0+∞y=*k=1nFkx<yx<*k=1nFk
139 27 136 138 rexxfr2d F:0+∞yranseq1+𝑒Fx<ynx<*k=1nFk
140 139 ad2antrr F:0+∞xx<*kFkyranseq1+𝑒Fx<ynx<*k=1nFk
141 129 140 mpbird F:0+∞xx<*kFkyranseq1+𝑒Fx<y
142 141 ex F:0+∞xx<*kFkyranseq1+𝑒Fx<y
143 142 ralrimiva F:0+∞xx<*kFkyranseq1+𝑒Fx<y
144 supxr2 ranseq1+𝑒F**kFk*xranseq1+𝑒Fx*kFkxx<*kFkyranseq1+𝑒Fx<ysupranseq1+𝑒F*<=*kFk
145 32 39 60 143 144 syl22anc F:0+∞supranseq1+𝑒F*<=*kFk
146 145 eqcomd F:0+∞*kFk=supranseq1+𝑒F*<