Metamath Proof Explorer


Theorem esumfsup

Description: Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017)

Ref Expression
Hypothesis esumfsup.1 _ k F
Assertion esumfsup F : 0 +∞ * k F k = sup ran seq 1 + 𝑒 F * <

Proof

Step Hyp Ref Expression
1 esumfsup.1 _ k F
2 1z 1
3 seqfn 1 seq 1 + 𝑒 F Fn 1
4 2 3 ax-mp seq 1 + 𝑒 F Fn 1
5 nnuz = 1
6 5 fneq2i seq 1 + 𝑒 F Fn seq 1 + 𝑒 F Fn 1
7 4 6 mpbir seq 1 + 𝑒 F Fn
8 iccssxr 0 +∞ *
9 1 esumfzf F : 0 +∞ n * k = 1 n F k = seq 1 + 𝑒 F n
10 ovex 1 n V
11 nfcv _ k
12 nfcv _ k 0 +∞
13 1 11 12 nff k F : 0 +∞
14 nfv k n
15 13 14 nfan k F : 0 +∞ n
16 simpll F : 0 +∞ n k 1 n F : 0 +∞
17 1nn 1
18 fzssnn 1 1 n
19 17 18 mp1i F : 0 +∞ n k 1 n 1 n
20 simpr F : 0 +∞ n k 1 n k 1 n
21 19 20 sseldd F : 0 +∞ n k 1 n k
22 16 21 ffvelrnd F : 0 +∞ n k 1 n F k 0 +∞
23 22 ex F : 0 +∞ n k 1 n F k 0 +∞
24 15 23 ralrimi F : 0 +∞ n k 1 n F k 0 +∞
25 nfcv _ k 1 n
26 25 esumcl 1 n V k 1 n F k 0 +∞ * k = 1 n F k 0 +∞
27 10 24 26 sylancr F : 0 +∞ n * k = 1 n F k 0 +∞
28 9 27 eqeltrrd F : 0 +∞ n seq 1 + 𝑒 F n 0 +∞
29 8 28 sselid F : 0 +∞ n seq 1 + 𝑒 F n *
30 29 ralrimiva F : 0 +∞ n seq 1 + 𝑒 F n *
31 fnfvrnss seq 1 + 𝑒 F Fn n seq 1 + 𝑒 F n * ran seq 1 + 𝑒 F *
32 7 30 31 sylancr F : 0 +∞ ran seq 1 + 𝑒 F *
33 nnex V
34 ffvelrn F : 0 +∞ k F k 0 +∞
35 34 ex F : 0 +∞ k F k 0 +∞
36 13 35 ralrimi F : 0 +∞ k F k 0 +∞
37 11 esumcl V k F k 0 +∞ * k F k 0 +∞
38 33 36 37 sylancr F : 0 +∞ * k F k 0 +∞
39 8 38 sselid F : 0 +∞ * k F k *
40 fvelrnb seq 1 + 𝑒 F Fn x ran seq 1 + 𝑒 F n seq 1 + 𝑒 F n = x
41 7 40 mp1i F : 0 +∞ x ran seq 1 + 𝑒 F n seq 1 + 𝑒 F n = x
42 eqcom * k = 1 n F k = x x = * k = 1 n F k
43 9 eqeq1d F : 0 +∞ n * k = 1 n F k = x seq 1 + 𝑒 F n = x
44 42 43 bitr3id F : 0 +∞ n x = * k = 1 n F k seq 1 + 𝑒 F n = x
45 44 rexbidva F : 0 +∞ n x = * k = 1 n F k n seq 1 + 𝑒 F n = x
46 41 45 bitr4d F : 0 +∞ x ran seq 1 + 𝑒 F n x = * k = 1 n F k
47 46 biimpa F : 0 +∞ x ran seq 1 + 𝑒 F n x = * k = 1 n F k
48 33 a1i F : 0 +∞ n V
49 34 adantlr F : 0 +∞ n k F k 0 +∞
50 17 18 mp1i F : 0 +∞ n 1 n
51 15 48 49 50 esummono F : 0 +∞ n * k = 1 n F k * k F k
52 51 ralrimiva F : 0 +∞ n * k = 1 n F k * k F k
53 52 adantr F : 0 +∞ x ran seq 1 + 𝑒 F n * k = 1 n F k * k F k
54 47 53 jca F : 0 +∞ x ran seq 1 + 𝑒 F n x = * k = 1 n F k n * k = 1 n F k * k F k
55 r19.29r n x = * k = 1 n F k n * k = 1 n F k * k F k n x = * k = 1 n F k * k = 1 n F k * k F k
56 breq1 x = * k = 1 n F k x * k F k * k = 1 n F k * k F k
57 56 biimpar x = * k = 1 n F k * k = 1 n F k * k F k x * k F k
58 57 rexlimivw n x = * k = 1 n F k * k = 1 n F k * k F k x * k F k
59 54 55 58 3syl F : 0 +∞ x ran seq 1 + 𝑒 F x * k F k
60 59 ralrimiva F : 0 +∞ x ran seq 1 + 𝑒 F x * k F k
61 nfv k x
62 13 61 nfan k F : 0 +∞ x
63 nfcv _ k x
64 nfcv _ k <
65 11 nfesum1 _ k * k F k
66 63 64 65 nfbr k x < * k F k
67 62 66 nfan k F : 0 +∞ x x < * k F k
68 33 a1i F : 0 +∞ x x < * k F k V
69 simplll F : 0 +∞ x x < * k F k k F : 0 +∞
70 69 34 sylancom F : 0 +∞ x x < * k F k k F k 0 +∞
71 simplr F : 0 +∞ x x < * k F k x
72 71 rexrd F : 0 +∞ x x < * k F k x *
73 simpr F : 0 +∞ x x < * k F k x < * k F k
74 67 68 70 72 73 esumlub F : 0 +∞ x x < * k F k a 𝒫 Fin x < * k a F k
75 ssnnssfz a 𝒫 Fin n a 1 n
76 r19.42v n F : 0 +∞ x x < * k F k a 1 n F : 0 +∞ x x < * k F k n a 1 n
77 nfv k a 1 n
78 67 77 nfan k F : 0 +∞ x x < * k F k a 1 n
79 10 a1i F : 0 +∞ x x < * k F k a 1 n 1 n V
80 simp-4l F : 0 +∞ x x < * k F k a 1 n k 1 n F : 0 +∞
81 17 18 ax-mp 1 n
82 simpr F : 0 +∞ x x < * k F k a 1 n k 1 n k 1 n
83 81 82 sselid F : 0 +∞ x x < * k F k a 1 n k 1 n k
84 80 83 ffvelrnd F : 0 +∞ x x < * k F k a 1 n k 1 n F k 0 +∞
85 simpr F : 0 +∞ x x < * k F k a 1 n a 1 n
86 78 79 84 85 esummono F : 0 +∞ x x < * k F k a 1 n * k a F k * k = 1 n F k
87 86 reximi n F : 0 +∞ x x < * k F k a 1 n n * k a F k * k = 1 n F k
88 76 87 sylbir F : 0 +∞ x x < * k F k n a 1 n n * k a F k * k = 1 n F k
89 75 88 sylan2 F : 0 +∞ x x < * k F k a 𝒫 Fin n * k a F k * k = 1 n F k
90 89 ralrimiva F : 0 +∞ x x < * k F k a 𝒫 Fin n * k a F k * k = 1 n F k
91 r19.29r a 𝒫 Fin x < * k a F k a 𝒫 Fin n * k a F k * k = 1 n F k a 𝒫 Fin x < * k a F k n * k a F k * k = 1 n F k
92 r19.42v n x < * k a F k * k a F k * k = 1 n F k x < * k a F k n * k a F k * k = 1 n F k
93 92 rexbii a 𝒫 Fin n x < * k a F k * k a F k * k = 1 n F k a 𝒫 Fin x < * k a F k n * k a F k * k = 1 n F k
94 91 93 sylibr a 𝒫 Fin x < * k a F k a 𝒫 Fin n * k a F k * k = 1 n F k a 𝒫 Fin n x < * k a F k * k a F k * k = 1 n F k
95 74 90 94 syl2anc F : 0 +∞ x x < * k F k a 𝒫 Fin n x < * k a F k * k a F k * k = 1 n F k
96 simp-4r F : 0 +∞ x x < * k F k a 𝒫 Fin n x
97 96 rexrd F : 0 +∞ x x < * k F k a 𝒫 Fin n x *
98 vex a V
99 nfcv _ k a
100 99 nfel1 k a 𝒫 Fin
101 67 100 nfan k F : 0 +∞ x x < * k F k a 𝒫 Fin
102 101 14 nfan k F : 0 +∞ x x < * k F k a 𝒫 Fin n
103 simp-5l F : 0 +∞ x x < * k F k a 𝒫 Fin n k a F : 0 +∞
104 simpllr F : 0 +∞ x x < * k F k a 𝒫 Fin n k a a 𝒫 Fin
105 inss1 𝒫 Fin 𝒫
106 105 sseli a 𝒫 Fin a 𝒫
107 elpwi a 𝒫 a
108 104 106 107 3syl F : 0 +∞ x x < * k F k a 𝒫 Fin n k a a
109 simpr F : 0 +∞ x x < * k F k a 𝒫 Fin n k a k a
110 108 109 sseldd F : 0 +∞ x x < * k F k a 𝒫 Fin n k a k
111 103 110 ffvelrnd F : 0 +∞ x x < * k F k a 𝒫 Fin n k a F k 0 +∞
112 111 ex F : 0 +∞ x x < * k F k a 𝒫 Fin n k a F k 0 +∞
113 102 112 ralrimi F : 0 +∞ x x < * k F k a 𝒫 Fin n k a F k 0 +∞
114 99 esumcl a V k a F k 0 +∞ * k a F k 0 +∞
115 98 113 114 sylancr F : 0 +∞ x x < * k F k a 𝒫 Fin n * k a F k 0 +∞
116 8 115 sselid F : 0 +∞ x x < * k F k a 𝒫 Fin n * k a F k *
117 simp-5l F : 0 +∞ x x < * k F k a 𝒫 Fin n k 1 n F : 0 +∞
118 simpr F : 0 +∞ x x < * k F k a 𝒫 Fin n k 1 n k 1 n
119 81 118 sselid F : 0 +∞ x x < * k F k a 𝒫 Fin n k 1 n k
120 117 119 ffvelrnd F : 0 +∞ x x < * k F k a 𝒫 Fin n k 1 n F k 0 +∞
121 120 ex F : 0 +∞ x x < * k F k a 𝒫 Fin n k 1 n F k 0 +∞
122 102 121 ralrimi F : 0 +∞ x x < * k F k a 𝒫 Fin n k 1 n F k 0 +∞
123 10 122 26 sylancr F : 0 +∞ x x < * k F k a 𝒫 Fin n * k = 1 n F k 0 +∞
124 8 123 sselid F : 0 +∞ x x < * k F k a 𝒫 Fin n * k = 1 n F k *
125 xrltletr x * * k a F k * * k = 1 n F k * x < * k a F k * k a F k * k = 1 n F k x < * k = 1 n F k
126 97 116 124 125 syl3anc F : 0 +∞ x x < * k F k a 𝒫 Fin n x < * k a F k * k a F k * k = 1 n F k x < * k = 1 n F k
127 126 reximdva F : 0 +∞ x x < * k F k a 𝒫 Fin n x < * k a F k * k a F k * k = 1 n F k n x < * k = 1 n F k
128 127 rexlimdva F : 0 +∞ x x < * k F k a 𝒫 Fin n x < * k a F k * k a F k * k = 1 n F k n x < * k = 1 n F k
129 95 128 mpd F : 0 +∞ x x < * k F k n x < * k = 1 n F k
130 fvelrnb seq 1 + 𝑒 F Fn y ran seq 1 + 𝑒 F n seq 1 + 𝑒 F n = y
131 7 130 mp1i F : 0 +∞ y ran seq 1 + 𝑒 F n seq 1 + 𝑒 F n = y
132 eqcom * k = 1 n F k = y y = * k = 1 n F k
133 9 eqeq1d F : 0 +∞ n * k = 1 n F k = y seq 1 + 𝑒 F n = y
134 132 133 bitr3id F : 0 +∞ n y = * k = 1 n F k seq 1 + 𝑒 F n = y
135 134 rexbidva F : 0 +∞ n y = * k = 1 n F k n seq 1 + 𝑒 F n = y
136 131 135 bitr4d F : 0 +∞ y ran seq 1 + 𝑒 F n y = * k = 1 n F k
137 simpr F : 0 +∞ y = * k = 1 n F k y = * k = 1 n F k
138 137 breq2d F : 0 +∞ y = * k = 1 n F k x < y x < * k = 1 n F k
139 27 136 138 rexxfr2d F : 0 +∞ y ran seq 1 + 𝑒 F x < y n x < * k = 1 n F k
140 139 ad2antrr F : 0 +∞ x x < * k F k y ran seq 1 + 𝑒 F x < y n x < * k = 1 n F k
141 129 140 mpbird F : 0 +∞ x x < * k F k y ran seq 1 + 𝑒 F x < y
142 141 ex F : 0 +∞ x x < * k F k y ran seq 1 + 𝑒 F x < y
143 142 ralrimiva F : 0 +∞ x x < * k F k y ran seq 1 + 𝑒 F x < y
144 supxr2 ran seq 1 + 𝑒 F * * k F k * x ran seq 1 + 𝑒 F x * k F k x x < * k F k y ran seq 1 + 𝑒 F x < y sup ran seq 1 + 𝑒 F * < = * k F k
145 32 39 60 143 144 syl22anc F : 0 +∞ sup ran seq 1 + 𝑒 F * < = * k F k
146 145 eqcomd F : 0 +∞ * k F k = sup ran seq 1 + 𝑒 F * <