Metamath Proof Explorer


Theorem evlseu

Description: For a given interpretation of the variables G and of the scalars F , this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlseu.p P=ImPolyR
evlseu.c C=BaseS
evlseu.a A=algScP
evlseu.v V=ImVarR
evlseu.i φIW
evlseu.r φRCRing
evlseu.s φSCRing
evlseu.f φFRRingHomS
evlseu.g φG:IC
Assertion evlseu φ∃!mPRingHomSmA=FmV=G

Proof

Step Hyp Ref Expression
1 evlseu.p P=ImPolyR
2 evlseu.c C=BaseS
3 evlseu.a A=algScP
4 evlseu.v V=ImVarR
5 evlseu.i φIW
6 evlseu.r φRCRing
7 evlseu.s φSCRing
8 evlseu.f φFRRingHomS
9 evlseu.g φG:IC
10 eqid BaseP=BaseP
11 eqid z0I|z-1Fin=z0I|z-1Fin
12 eqid mulGrpS=mulGrpS
13 eqid mulGrpS=mulGrpS
14 eqid S=S
15 eqid xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfG=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfG
16 1 10 2 11 12 13 14 4 15 5 6 7 8 9 3 evlslem1 φxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGPRingHomSxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGA=FxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGV=G
17 coeq1 m=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGmA=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGA
18 17 eqeq1d m=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGmA=FxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGA=F
19 coeq1 m=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGmV=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGV
20 19 eqeq1d m=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGmV=GxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGV=G
21 18 20 anbi12d m=xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGmA=FmV=GxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGA=FxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGV=G
22 21 rspcev xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGPRingHomSxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGA=FxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGV=GmPRingHomSmA=FmV=G
23 22 3impb xBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGPRingHomSxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGA=FxBasePSyz0I|z-1FinFxySmulGrpSymulGrpSfGV=GmPRingHomSmA=FmV=G
24 16 23 syl φmPRingHomSmA=FmV=G
25 eqid BaseR=BaseR
26 crngring RCRingRRing
27 6 26 syl φRRing
28 1 10 25 3 5 27 mplasclf φA:BaseRBaseP
29 28 ffund φFunA
30 funcoeqres FunAmA=FmranA=FA-1
31 29 30 sylan φmA=FmranA=FA-1
32 1 4 10 5 27 mvrf2 φV:IBaseP
33 32 ffund φFunV
34 funcoeqres FunVmV=GmranV=GV-1
35 33 34 sylan φmV=GmranV=GV-1
36 31 35 anim12dan φmA=FmV=GmranA=FA-1mranV=GV-1
37 36 ex φmA=FmV=GmranA=FA-1mranV=GV-1
38 resundi mranAranV=mranAmranV
39 uneq12 mranA=FA-1mranV=GV-1mranAmranV=FA-1GV-1
40 38 39 eqtrid mranA=FA-1mranV=GV-1mranAranV=FA-1GV-1
41 37 40 syl6 φmA=FmV=GmranAranV=FA-1GV-1
42 41 ralrimivw φmPRingHomSmA=FmV=GmranAranV=FA-1GV-1
43 eqtr3 mranAranV=FA-1GV-1nranAranV=FA-1GV-1mranAranV=nranAranV
44 eqid ImPwSerR=ImPwSerR
45 44 5 6 psrassa φImPwSerRAssAlg
46 eqid BaseImPwSerR=BaseImPwSerR
47 44 4 46 5 27 mvrf φV:IBaseImPwSerR
48 47 frnd φranVBaseImPwSerR
49 eqid AlgSpanImPwSerR=AlgSpanImPwSerR
50 eqid algScImPwSerR=algScImPwSerR
51 eqid mrClsSubRingImPwSerR=mrClsSubRingImPwSerR
52 49 50 51 46 aspval2 ImPwSerRAssAlgranVBaseImPwSerRAlgSpanImPwSerRranV=mrClsSubRingImPwSerRranalgScImPwSerRranV
53 45 48 52 syl2anc φAlgSpanImPwSerRranV=mrClsSubRingImPwSerRranalgScImPwSerRranV
54 1 44 4 49 5 6 mplbas2 φAlgSpanImPwSerRranV=BaseP
55 44 1 10 5 27 mplsubrg φBasePSubRingImPwSerR
56 1 44 10 mplval2 P=ImPwSerR𝑠BaseP
57 56 subsubrg2 BasePSubRingImPwSerRSubRingP=SubRingImPwSerR𝒫BaseP
58 55 57 syl φSubRingP=SubRingImPwSerR𝒫BaseP
59 58 fveq2d φmrClsSubRingP=mrClsSubRingImPwSerR𝒫BaseP
60 50 56 ressascl BasePSubRingImPwSerRalgScImPwSerR=algScP
61 55 60 syl φalgScImPwSerR=algScP
62 3 61 eqtr4id φA=algScImPwSerR
63 62 rneqd φranA=ranalgScImPwSerR
64 63 uneq1d φranAranV=ranalgScImPwSerRranV
65 59 64 fveq12d φmrClsSubRingPranAranV=mrClsSubRingImPwSerR𝒫BasePranalgScImPwSerRranV
66 assaring ImPwSerRAssAlgImPwSerRRing
67 46 subrgmre ImPwSerRRingSubRingImPwSerRMooreBaseImPwSerR
68 45 66 67 3syl φSubRingImPwSerRMooreBaseImPwSerR
69 28 frnd φranABaseP
70 63 69 eqsstrrd φranalgScImPwSerRBaseP
71 32 frnd φranVBaseP
72 70 71 unssd φranalgScImPwSerRranVBaseP
73 eqid mrClsSubRingImPwSerR𝒫BaseP=mrClsSubRingImPwSerR𝒫BaseP
74 51 73 submrc SubRingImPwSerRMooreBaseImPwSerRBasePSubRingImPwSerRranalgScImPwSerRranVBasePmrClsSubRingImPwSerR𝒫BasePranalgScImPwSerRranV=mrClsSubRingImPwSerRranalgScImPwSerRranV
75 68 55 72 74 syl3anc φmrClsSubRingImPwSerR𝒫BasePranalgScImPwSerRranV=mrClsSubRingImPwSerRranalgScImPwSerRranV
76 65 75 eqtr2d φmrClsSubRingImPwSerRranalgScImPwSerRranV=mrClsSubRingPranAranV
77 53 54 76 3eqtr3d φBaseP=mrClsSubRingPranAranV
78 77 ad2antrr φmPRingHomSnPRingHomSranAranVdommnBaseP=mrClsSubRingPranAranV
79 1 mplring IWRRingPRing
80 5 27 79 syl2anc φPRing
81 10 subrgmre PRingSubRingPMooreBaseP
82 80 81 syl φSubRingPMooreBaseP
83 82 ad2antrr φmPRingHomSnPRingHomSranAranVdommnSubRingPMooreBaseP
84 simpr φmPRingHomSnPRingHomSranAranVdommnranAranVdommn
85 rhmeql mPRingHomSnPRingHomSdommnSubRingP
86 85 ad2antlr φmPRingHomSnPRingHomSranAranVdommndommnSubRingP
87 eqid mrClsSubRingP=mrClsSubRingP
88 87 mrcsscl SubRingPMooreBasePranAranVdommndommnSubRingPmrClsSubRingPranAranVdommn
89 83 84 86 88 syl3anc φmPRingHomSnPRingHomSranAranVdommnmrClsSubRingPranAranVdommn
90 78 89 eqsstrd φmPRingHomSnPRingHomSranAranVdommnBasePdommn
91 90 ex φmPRingHomSnPRingHomSranAranVdommnBasePdommn
92 simprl φmPRingHomSnPRingHomSmPRingHomS
93 10 2 rhmf mPRingHomSm:BasePC
94 ffn m:BasePCmFnBaseP
95 92 93 94 3syl φmPRingHomSnPRingHomSmFnBaseP
96 simprr φmPRingHomSnPRingHomSnPRingHomS
97 10 2 rhmf nPRingHomSn:BasePC
98 ffn n:BasePCnFnBaseP
99 96 97 98 3syl φmPRingHomSnPRingHomSnFnBaseP
100 69 adantr φmPRingHomSnPRingHomSranABaseP
101 71 adantr φmPRingHomSnPRingHomSranVBaseP
102 100 101 unssd φmPRingHomSnPRingHomSranAranVBaseP
103 fnreseql mFnBasePnFnBasePranAranVBasePmranAranV=nranAranVranAranVdommn
104 95 99 102 103 syl3anc φmPRingHomSnPRingHomSmranAranV=nranAranVranAranVdommn
105 fneqeql2 mFnBasePnFnBasePm=nBasePdommn
106 95 99 105 syl2anc φmPRingHomSnPRingHomSm=nBasePdommn
107 91 104 106 3imtr4d φmPRingHomSnPRingHomSmranAranV=nranAranVm=n
108 43 107 syl5 φmPRingHomSnPRingHomSmranAranV=FA-1GV-1nranAranV=FA-1GV-1m=n
109 108 ralrimivva φmPRingHomSnPRingHomSmranAranV=FA-1GV-1nranAranV=FA-1GV-1m=n
110 reseq1 m=nmranAranV=nranAranV
111 110 eqeq1d m=nmranAranV=FA-1GV-1nranAranV=FA-1GV-1
112 111 rmo4 *mPRingHomSmranAranV=FA-1GV-1mPRingHomSnPRingHomSmranAranV=FA-1GV-1nranAranV=FA-1GV-1m=n
113 109 112 sylibr φ*mPRingHomSmranAranV=FA-1GV-1
114 rmoim mPRingHomSmA=FmV=GmranAranV=FA-1GV-1*mPRingHomSmranAranV=FA-1GV-1*mPRingHomSmA=FmV=G
115 42 113 114 sylc φ*mPRingHomSmA=FmV=G
116 reu5 ∃!mPRingHomSmA=FmV=GmPRingHomSmA=FmV=G*mPRingHomSmA=FmV=G
117 24 115 116 sylanbrc φ∃!mPRingHomSmA=FmV=G