Metamath Proof Explorer


Theorem fbasrn

Description: Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis fbasrn.c C=ranxBFx
Assertion fbasrn BfBasXF:XYYVCfBasY

Proof

Step Hyp Ref Expression
1 fbasrn.c C=ranxBFx
2 simpl3 BfBasXF:XYYVxBYV
3 simpl2 BfBasXF:XYYVxBF:XY
4 fimass F:XYFxY
5 3 4 syl BfBasXF:XYYVxBFxY
6 2 5 sselpwd BfBasXF:XYYVxBFx𝒫Y
7 6 fmpttd BfBasXF:XYYVxBFx:B𝒫Y
8 7 frnd BfBasXF:XYYVranxBFx𝒫Y
9 1 8 eqsstrid BfBasXF:XYYVC𝒫Y
10 1 a1i BfBasXF:XYYVC=ranxBFx
11 ffun F:XYFunF
12 11 3ad2ant2 BfBasXF:XYYVFunF
13 funimaexg FunFxBFxV
14 13 ralrimiva FunFxBFxV
15 dmmptg xBFxVdomxBFx=B
16 12 14 15 3syl BfBasXF:XYYVdomxBFx=B
17 fbasne0 BfBasXB
18 17 3ad2ant1 BfBasXF:XYYVB
19 16 18 eqnetrd BfBasXF:XYYVdomxBFx
20 dm0rn0 domxBFx=ranxBFx=
21 20 necon3bii domxBFxranxBFx
22 19 21 sylib BfBasXF:XYYVranxBFx
23 10 22 eqnetrd BfBasXF:XYYVC
24 fbelss BfBasXxBxX
25 24 ex BfBasXxBxX
26 25 3ad2ant1 BfBasXF:XYYVxBxX
27 0nelfb BfBasX¬B
28 eleq1 x=xBB
29 28 notbid x=¬xB¬B
30 27 29 syl5ibrcom BfBasXx=¬xB
31 30 con2d BfBasXxB¬x=
32 31 3ad2ant1 BfBasXF:XYYVxB¬x=
33 26 32 jcad BfBasXF:XYYVxBxX¬x=
34 fdm F:XYdomF=X
35 34 3ad2ant2 BfBasXF:XYYVdomF=X
36 35 sseq2d BfBasXF:XYYVxdomFxX
37 36 biimpar BfBasXF:XYYVxXxdomF
38 sseqin2 xdomFdomFx=x
39 37 38 sylib BfBasXF:XYYVxXdomFx=x
40 39 eqeq1d BfBasXF:XYYVxXdomFx=x=
41 40 biimpd BfBasXF:XYYVxXdomFx=x=
42 41 con3d BfBasXF:XYYVxX¬x=¬domFx=
43 42 expimpd BfBasXF:XYYVxX¬x=¬domFx=
44 eqcom =FxFx=
45 imadisj Fx=domFx=
46 44 45 bitri =FxdomFx=
47 46 notbii ¬=Fx¬domFx=
48 43 47 syl6ibr BfBasXF:XYYVxX¬x=¬=Fx
49 33 48 syld BfBasXF:XYYVxB¬=Fx
50 49 ralrimiv BfBasXF:XYYVxB¬=Fx
51 1 eleq2i CranxBFx
52 0ex V
53 eqid xBFx=xBFx
54 53 elrnmpt VranxBFxxB=Fx
55 52 54 ax-mp ranxBFxxB=Fx
56 51 55 bitri CxB=Fx
57 56 notbii ¬C¬xB=Fx
58 df-nel C¬C
59 ralnex xB¬=Fx¬xB=Fx
60 57 58 59 3bitr4i CxB¬=Fx
61 50 60 sylibr BfBasXF:XYYVC
62 1 eleq2i rCrranxBFx
63 imaeq2 x=uFx=Fu
64 63 cbvmptv xBFx=uBFu
65 64 elrnmpt rVrranxBFxuBr=Fu
66 65 elv rranxBFxuBr=Fu
67 62 66 bitri rCuBr=Fu
68 1 eleq2i sCsranxBFx
69 imaeq2 x=vFx=Fv
70 69 cbvmptv xBFx=vBFv
71 70 elrnmpt sVsranxBFxvBs=Fv
72 71 elv sranxBFxvBs=Fv
73 68 72 bitri sCvBs=Fv
74 67 73 anbi12i rCsCuBr=FuvBs=Fv
75 reeanv uBvBr=Fus=FvuBr=FuvBs=Fv
76 74 75 bitr4i rCsCuBvBr=Fus=Fv
77 fbasssin BfBasXuBvBwBwuv
78 77 3expb BfBasXuBvBwBwuv
79 78 3ad2antl1 BfBasXF:XYYVuBvBwBwuv
80 79 adantrr BfBasXF:XYYVuBvBr=Fus=FvwBwuv
81 eqid Fw=Fw
82 imaeq2 x=wFx=Fw
83 82 rspceeqv wBFw=FwxBFw=Fx
84 81 83 mpan2 wBxBFw=Fx
85 84 ad2antrl BfBasXF:XYYVr=Fus=FvwBwuvxBFw=Fx
86 1 eleq2i FwCFwranxBFx
87 vex wV
88 87 funimaex FunFFwV
89 53 elrnmpt FwVFwranxBFxxBFw=Fx
90 12 88 89 3syl BfBasXF:XYYVFwranxBFxxBFw=Fx
91 86 90 bitrid BfBasXF:XYYVFwCxBFw=Fx
92 91 ad2antrr BfBasXF:XYYVr=Fus=FvwBwuvFwCxBFw=Fx
93 85 92 mpbird BfBasXF:XYYVr=Fus=FvwBwuvFwC
94 imass2 wuvFwFuv
95 94 ad2antll BfBasXF:XYYVr=Fus=FvwBwuvFwFuv
96 inss1 uvu
97 imass2 uvuFuvFu
98 96 97 ax-mp FuvFu
99 inss2 uvv
100 imass2 uvvFuvFv
101 99 100 ax-mp FuvFv
102 98 101 ssini FuvFuFv
103 ineq12 r=Fus=Fvrs=FuFv
104 103 ad2antlr BfBasXF:XYYVr=Fus=FvwBwuvrs=FuFv
105 102 104 sseqtrrid BfBasXF:XYYVr=Fus=FvwBwuvFuvrs
106 95 105 sstrd BfBasXF:XYYVr=Fus=FvwBwuvFwrs
107 sseq1 z=FwzrsFwrs
108 107 rspcev FwCFwrszCzrs
109 93 106 108 syl2anc BfBasXF:XYYVr=Fus=FvwBwuvzCzrs
110 109 adantlrl BfBasXF:XYYVuBvBr=Fus=FvwBwuvzCzrs
111 80 110 rexlimddv BfBasXF:XYYVuBvBr=Fus=FvzCzrs
112 111 exp32 BfBasXF:XYYVuBvBr=Fus=FvzCzrs
113 112 rexlimdvv BfBasXF:XYYVuBvBr=Fus=FvzCzrs
114 76 113 biimtrid BfBasXF:XYYVrCsCzCzrs
115 114 ralrimivv BfBasXF:XYYVrCsCzCzrs
116 23 61 115 3jca BfBasXF:XYYVCCrCsCzCzrs
117 isfbas2 YVCfBasYC𝒫YCCrCsCzCzrs
118 117 3ad2ant3 BfBasXF:XYYVCfBasYC𝒫YCCrCsCzCzrs
119 9 116 118 mpbir2and BfBasXF:XYYVCfBasY