Metamath Proof Explorer


Theorem fnwelem

Description: Lemma for fnwe . (Contributed by Mario Carneiro, 10-Mar-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses fnwe.1 T=xy|xAyAFxRFyFx=FyxSy
fnwe.2 φF:AB
fnwe.3 φRWeB
fnwe.4 φSWeA
fnwe.5 φFwV
fnwelem.6 Q=uv|uB×AvB×A1stuR1stv1stu=1stv2nduS2ndv
fnwelem.7 G=zAFzz
Assertion fnwelem φTWeA

Proof

Step Hyp Ref Expression
1 fnwe.1 T=xy|xAyAFxRFyFx=FyxSy
2 fnwe.2 φF:AB
3 fnwe.3 φRWeB
4 fnwe.4 φSWeA
5 fnwe.5 φFwV
6 fnwelem.6 Q=uv|uB×AvB×A1stuR1stv1stu=1stv2nduS2ndv
7 fnwelem.7 G=zAFzz
8 ffvelcdm F:ABzAFzB
9 simpr F:ABzAzA
10 8 9 opelxpd F:ABzAFzzB×A
11 10 7 fmptd F:ABG:AB×A
12 frn G:AB×AranGB×A
13 2 11 12 3syl φranGB×A
14 6 wexp RWeBSWeAQWeB×A
15 3 4 14 syl2anc φQWeB×A
16 wess ranGB×AQWeB×AQWeranG
17 13 15 16 sylc φQWeranG
18 fveq2 z=xFz=Fx
19 id z=xz=x
20 18 19 opeq12d z=xFzz=Fxx
21 opex FxxV
22 20 7 21 fvmpt xAGx=Fxx
23 fveq2 z=yFz=Fy
24 id z=yz=y
25 23 24 opeq12d z=yFzz=Fyy
26 opex FyyV
27 25 7 26 fvmpt yAGy=Fyy
28 22 27 eqeqan12d xAyAGx=GyFxx=Fyy
29 fvex FxV
30 vex xV
31 29 30 opth Fxx=FyyFx=Fyx=y
32 31 simprbi Fxx=Fyyx=y
33 28 32 syl6bi xAyAGx=Gyx=y
34 33 rgen2 xAyAGx=Gyx=y
35 dff13 G:A1-1B×AG:AB×AxAyAGx=Gyx=y
36 11 34 35 sylanblrc F:ABG:A1-1B×A
37 f1f1orn G:A1-1B×AG:A1-1 ontoranG
38 f1ocnv G:A1-1 ontoranGG-1:ranG1-1 ontoA
39 2 36 37 38 4syl φG-1:ranG1-1 ontoA
40 eqid xy|xAyAG-1-1xQG-1-1y=xy|xAyAG-1-1xQG-1-1y
41 40 f1oiso2 G-1:ranG1-1 ontoAG-1IsomQ,xy|xAyAG-1-1xQG-1-1yranGA
42 frel G:AB×ARelG
43 dfrel2 RelGG-1-1=G
44 42 43 sylib G:AB×AG-1-1=G
45 44 fveq1d G:AB×AG-1-1x=Gx
46 44 fveq1d G:AB×AG-1-1y=Gy
47 45 46 breq12d G:AB×AG-1-1xQG-1-1yGxQGy
48 11 47 syl F:ABG-1-1xQG-1-1yGxQGy
49 48 adantr F:ABxAyAG-1-1xQG-1-1yGxQGy
50 22 27 breqan12d xAyAGxQGyFxxQFyy
51 50 adantl F:ABxAyAGxQGyFxxQFyy
52 eleq1 u=FxxuB×AFxxB×A
53 opelxp FxxB×AFxBxA
54 52 53 bitrdi u=FxxuB×AFxBxA
55 54 anbi1d u=FxxuB×AvB×AFxBxAvB×A
56 29 30 op1std u=Fxx1stu=Fx
57 56 breq1d u=Fxx1stuR1stvFxR1stv
58 56 eqeq1d u=Fxx1stu=1stvFx=1stv
59 29 30 op2ndd u=Fxx2ndu=x
60 59 breq1d u=Fxx2nduS2ndvxS2ndv
61 58 60 anbi12d u=Fxx1stu=1stv2nduS2ndvFx=1stvxS2ndv
62 57 61 orbi12d u=Fxx1stuR1stv1stu=1stv2nduS2ndvFxR1stvFx=1stvxS2ndv
63 55 62 anbi12d u=FxxuB×AvB×A1stuR1stv1stu=1stv2nduS2ndvFxBxAvB×AFxR1stvFx=1stvxS2ndv
64 eleq1 v=FyyvB×AFyyB×A
65 opelxp FyyB×AFyByA
66 64 65 bitrdi v=FyyvB×AFyByA
67 66 anbi2d v=FyyFxBxAvB×AFxBxAFyByA
68 fvex FyV
69 vex yV
70 68 69 op1std v=Fyy1stv=Fy
71 70 breq2d v=FyyFxR1stvFxRFy
72 70 eqeq2d v=FyyFx=1stvFx=Fy
73 68 69 op2ndd v=Fyy2ndv=y
74 73 breq2d v=FyyxS2ndvxSy
75 72 74 anbi12d v=FyyFx=1stvxS2ndvFx=FyxSy
76 71 75 orbi12d v=FyyFxR1stvFx=1stvxS2ndvFxRFyFx=FyxSy
77 67 76 anbi12d v=FyyFxBxAvB×AFxR1stvFx=1stvxS2ndvFxBxAFyByAFxRFyFx=FyxSy
78 21 26 63 77 6 brab FxxQFyyFxBxAFyByAFxRFyFx=FyxSy
79 ffvelcdm F:ABxAFxB
80 simpr F:ABxAxA
81 79 80 jca F:ABxAFxBxA
82 ffvelcdm F:AByAFyB
83 simpr F:AByAyA
84 82 83 jca F:AByAFyByA
85 81 84 anim12dan F:ABxAyAFxBxAFyByA
86 85 biantrurd F:ABxAyAFxRFyFx=FyxSyFxBxAFyByAFxRFyFx=FyxSy
87 78 86 bitr4id F:ABxAyAFxxQFyyFxRFyFx=FyxSy
88 49 51 87 3bitrrd F:ABxAyAFxRFyFx=FyxSyG-1-1xQG-1-1y
89 88 pm5.32da F:ABxAyAFxRFyFx=FyxSyxAyAG-1-1xQG-1-1y
90 89 opabbidv F:ABxy|xAyAFxRFyFx=FyxSy=xy|xAyAG-1-1xQG-1-1y
91 1 90 eqtrid F:ABT=xy|xAyAG-1-1xQG-1-1y
92 isoeq3 T=xy|xAyAG-1-1xQG-1-1yG-1IsomQ,TranGAG-1IsomQ,xy|xAyAG-1-1xQG-1-1yranGA
93 91 92 syl F:ABG-1IsomQ,TranGAG-1IsomQ,xy|xAyAG-1-1xQG-1-1yranGA
94 41 93 imbitrrid F:ABG-1:ranG1-1 ontoAG-1IsomQ,TranGA
95 2 39 94 sylc φG-1IsomQ,TranGA
96 isocnv G-1IsomQ,TranGAG-1-1IsomT,QAranG
97 95 96 syl φG-1-1IsomT,QAranG
98 imacnvcnv G-1-1w=Gw
99 vex wV
100 xpexg FwVwVFw×wV
101 5 99 100 sylancl φFw×wV
102 imadmres GdomGw=Gw
103 dmres domGw=wdomG
104 103 elin2 xdomGwxwxdomG
105 simprr φxwxdomGxdomG
106 f1dm G:A1-1B×AdomG=A
107 2 36 106 3syl φdomG=A
108 107 adantr φxwxdomGdomG=A
109 105 108 eleqtrd φxwxdomGxA
110 109 22 syl φxwxdomGGx=Fxx
111 2 ffnd φFFnA
112 111 adantr φxwxdomGFFnA
113 dmres domFw=wdomF
114 inss2 wdomFdomF
115 112 fndmd φxwxdomGdomF=A
116 114 115 sseqtrid φxwxdomGwdomFA
117 113 116 eqsstrid φxwxdomGdomFwA
118 simprl φxwxdomGxw
119 109 115 eleqtrrd φxwxdomGxdomF
120 113 elin2 xdomFwxwxdomF
121 118 119 120 sylanbrc φxwxdomGxdomFw
122 fnfvima FFnAdomFwAxdomFwFxFdomFw
123 112 117 121 122 syl3anc φxwxdomGFxFdomFw
124 imadmres FdomFw=Fw
125 123 124 eleqtrdi φxwxdomGFxFw
126 125 118 opelxpd φxwxdomGFxxFw×w
127 110 126 eqeltrd φxwxdomGGxFw×w
128 104 127 sylan2b φxdomGwGxFw×w
129 128 ralrimiva φxdomGwGxFw×w
130 f1fun G:A1-1B×AFunG
131 2 36 130 3syl φFunG
132 resss GwG
133 dmss GwGdomGwdomG
134 132 133 ax-mp domGwdomG
135 funimass4 FunGdomGwdomGGdomGwFw×wxdomGwGxFw×w
136 131 134 135 sylancl φGdomGwFw×wxdomGwGxFw×w
137 129 136 mpbird φGdomGwFw×w
138 102 137 eqsstrrid φGwFw×w
139 101 138 ssexd φGwV
140 98 139 eqeltrid φG-1-1wV
141 140 alrimiv φwG-1-1wV
142 isowe2 G-1-1IsomT,QAranGwG-1-1wVQWeranGTWeA
143 97 141 142 syl2anc φQWeranGTWeA
144 17 143 mpd φTWeA