Metamath Proof Explorer


Theorem fpwwe2

Description: Given any function F from well-orderings of subsets of A to A , there is a unique well-ordered subset <. X , ( WX ) >. which "agrees" with F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a . Theorem 1.1 of KanamoriPincus p. 415. (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
fpwwe2.4 X=domW
Assertion fpwwe2 φYWRYFRYY=XR=WX

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 fpwwe2.4 X=domW
5 1 2 3 4 fpwwe2lem10 φW:domW𝒫X×X
6 5 ffund φFunW
7 funbrfv2b FunWYWRYdomWWY=R
8 6 7 syl φYWRYdomWWY=R
9 8 simprbda φYWRYdomW
10 9 adantrr φYWRYFRYYdomW
11 elssuni YdomWYdomW
12 11 4 sseqtrrdi YdomWYX
13 10 12 syl φYWRYFRYYX
14 simpl XYWX=RY×XXY
15 14 a1i φYWRYFRYXYWX=RY×XXY
16 simplrr φYWRYFRYYXR=WXX×YYFRY
17 2 adantr φYWRYFRYAV
18 17 adantr φYWRYFRYYXR=WXX×YAV
19 1 2 3 4 fpwwe2lem11 φXdomW
20 funfvbrb FunWXdomWXWWX
21 6 20 syl φXdomWXWWX
22 19 21 mpbid φXWWX
23 1 2 fpwwe2lem2 φXWWXXAWXX×XWXWeXyX[˙WX-1y/u]˙uFWXu×u=y
24 22 23 mpbid φXAWXX×XWXWeXyX[˙WX-1y/u]˙uFWXu×u=y
25 24 ad2antrr φYWRYFRYYXR=WXX×YXAWXX×XWXWeXyX[˙WX-1y/u]˙uFWXu×u=y
26 25 simpld φYWRYFRYYXR=WXX×YXAWXX×X
27 26 simpld φYWRYFRYYXR=WXX×YXA
28 18 27 ssexd φYWRYFRYYXR=WXX×YXV
29 28 difexd φYWRYFRYYXR=WXX×YXYV
30 25 simprd φYWRYFRYYXR=WXX×YWXWeXyX[˙WX-1y/u]˙uFWXu×u=y
31 30 simpld φYWRYFRYYXR=WXX×YWXWeX
32 wefr WXWeXWXFrX
33 31 32 syl φYWRYFRYYXR=WXX×YWXFrX
34 difssd φYWRYFRYYXR=WXX×YXYX
35 fri XYVWXFrXXYXXYzXYwXY¬wWXz
36 35 expr XYVWXFrXXYXXYzXYwXY¬wWXz
37 29 33 34 36 syl21anc φYWRYFRYYXR=WXX×YXYzXYwXY¬wWXz
38 ssdif0 XWX-1zYXWX-1zY=
39 indif1 XYWX-1z=XWX-1zY
40 39 eqeq1i XYWX-1z=XWX-1zY=
41 disj XYWX-1z=wXY¬wWX-1z
42 vex wV
43 42 eliniseg zVwWX-1zwWXz
44 43 elv wWX-1zwWXz
45 44 notbii ¬wWX-1z¬wWXz
46 45 ralbii wXY¬wWX-1zwXY¬wWXz
47 41 46 bitri XYWX-1z=wXY¬wWXz
48 38 40 47 3bitr2i XWX-1zYwXY¬wWXz
49 cnvimass WX-1zdomWX
50 26 simprd φYWRYFRYYXR=WXX×YWXX×X
51 dmss WXX×XdomWXdomX×X
52 50 51 syl φYWRYFRYYXR=WXX×YdomWXdomX×X
53 dmxpid domX×X=X
54 52 53 sseqtrdi φYWRYFRYYXR=WXX×YdomWXX
55 49 54 sstrid φYWRYFRYYXR=WXX×YWX-1zX
56 sseqin2 WX-1zXXWX-1z=WX-1z
57 55 56 sylib φYWRYFRYYXR=WXX×YXWX-1z=WX-1z
58 57 sseq1d φYWRYFRYYXR=WXX×YXWX-1zYWX-1zY
59 48 58 bitr3id φYWRYFRYYXR=WXX×YwXY¬wWXzWX-1zY
60 59 rexbidv φYWRYFRYYXR=WXX×YzXYwXY¬wWXzzXYWX-1zY
61 eldifn zXY¬zY
62 61 ad2antrl φYWRYFRYYXR=WXX×YzXYWX-1zY¬zY
63 eleq1w w=zwYzY
64 63 notbid w=z¬wY¬zY
65 62 64 syl5ibrcom φYWRYFRYYXR=WXX×YzXYWX-1zYw=z¬wY
66 65 con2d φYWRYFRYYXR=WXX×YzXYWX-1zYwY¬w=z
67 66 imp φYWRYFRYYXR=WXX×YzXYWX-1zYwY¬w=z
68 62 adantr φYWRYFRYYXR=WXX×YzXYWX-1zYwY¬zY
69 simprr φYWRYFRYYXR=WXX×YR=WXX×Y
70 69 ad2antrr φYWRYFRYYXR=WXX×YzXYWX-1zYwYR=WXX×Y
71 70 breqd φYWRYFRYYXR=WXX×YzXYWX-1zYwYzRwzWXX×Yw
72 eldifi zXYzX
73 72 ad2antrl φYWRYFRYYXR=WXX×YzXYWX-1zYzX
74 73 adantr φYWRYFRYYXR=WXX×YzXYWX-1zYwYzX
75 simpr φYWRYFRYYXR=WXX×YzXYWX-1zYwYwY
76 brxp zX×YwzXwY
77 74 75 76 sylanbrc φYWRYFRYYXR=WXX×YzXYWX-1zYwYzX×Yw
78 brin zWXX×YwzWXwzX×Yw
79 78 rbaib zX×YwzWXX×YwzWXw
80 77 79 syl φYWRYFRYYXR=WXX×YzXYWX-1zYwYzWXX×YwzWXw
81 71 80 bitrd φYWRYFRYYXR=WXX×YzXYWX-1zYwYzRwzWXw
82 1 2 fpwwe2lem2 φYWRYARY×YRWeYyY[˙R-1y/u]˙uFRu×u=y
83 82 biimpa φYWRYARY×YRWeYyY[˙R-1y/u]˙uFRu×u=y
84 83 adantrr φYWRYFRYYARY×YRWeYyY[˙R-1y/u]˙uFRu×u=y
85 84 simpld φYWRYFRYYARY×Y
86 85 simprd φYWRYFRYRY×Y
87 86 ad5ant12 φYWRYFRYYXR=WXX×YzXYWX-1zYwYRY×Y
88 87 ssbrd φYWRYFRYYXR=WXX×YzXYWX-1zYwYzRwzY×Yw
89 brxp zY×YwzYwY
90 89 simplbi zY×YwzY
91 88 90 syl6 φYWRYFRYYXR=WXX×YzXYWX-1zYwYzRwzY
92 81 91 sylbird φYWRYFRYYXR=WXX×YzXYWX-1zYwYzWXwzY
93 68 92 mtod φYWRYFRYYXR=WXX×YzXYWX-1zYwY¬zWXw
94 31 ad2antrr φYWRYFRYYXR=WXX×YzXYWX-1zYwYWXWeX
95 weso WXWeXWXOrX
96 94 95 syl φYWRYFRYYXR=WXX×YzXYWX-1zYwYWXOrX
97 13 ad2antrr φYWRYFRYYXR=WXX×YzXYWX-1zYYX
98 97 sselda φYWRYFRYYXR=WXX×YzXYWX-1zYwYwX
99 sotric WXOrXwXzXwWXz¬w=zzWXw
100 ioran ¬w=zzWXw¬w=z¬zWXw
101 99 100 bitrdi WXOrXwXzXwWXz¬w=z¬zWXw
102 96 98 74 101 syl12anc φYWRYFRYYXR=WXX×YzXYWX-1zYwYwWXz¬w=z¬zWXw
103 67 93 102 mpbir2and φYWRYFRYYXR=WXX×YzXYWX-1zYwYwWXz
104 103 44 sylibr φYWRYFRYYXR=WXX×YzXYWX-1zYwYwWX-1z
105 104 ex φYWRYFRYYXR=WXX×YzXYWX-1zYwYwWX-1z
106 105 ssrdv φYWRYFRYYXR=WXX×YzXYWX-1zYYWX-1z
107 simprr φYWRYFRYYXR=WXX×YzXYWX-1zYWX-1zY
108 106 107 eqssd φYWRYFRYYXR=WXX×YzXYWX-1zYY=WX-1z
109 in32 WXX×YY×Y=WXY×YX×Y
110 simplrr φYWRYFRYYXR=WXX×YzXYWX-1zYR=WXX×Y
111 110 ineq1d φYWRYFRYYXR=WXX×YzXYWX-1zYRY×Y=WXX×YY×Y
112 86 ad2antrr φYWRYFRYYXR=WXX×YzXYWX-1zYRY×Y
113 df-ss RY×YRY×Y=R
114 112 113 sylib φYWRYFRYYXR=WXX×YzXYWX-1zYRY×Y=R
115 111 114 eqtr3d φYWRYFRYYXR=WXX×YzXYWX-1zYWXX×YY×Y=R
116 inss2 WXY×YY×Y
117 xpss1 YXY×YX×Y
118 97 117 syl φYWRYFRYYXR=WXX×YzXYWX-1zYY×YX×Y
119 116 118 sstrid φYWRYFRYYXR=WXX×YzXYWX-1zYWXY×YX×Y
120 df-ss WXY×YX×YWXY×YX×Y=WXY×Y
121 119 120 sylib φYWRYFRYYXR=WXX×YzXYWX-1zYWXY×YX×Y=WXY×Y
122 109 115 121 3eqtr3a φYWRYFRYYXR=WXX×YzXYWX-1zYR=WXY×Y
123 108 sqxpeqd φYWRYFRYYXR=WXX×YzXYWX-1zYY×Y=WX-1z×WX-1z
124 123 ineq2d φYWRYFRYYXR=WXX×YzXYWX-1zYWXY×Y=WXWX-1z×WX-1z
125 122 124 eqtrd φYWRYFRYYXR=WXX×YzXYWX-1zYR=WXWX-1z×WX-1z
126 108 125 oveq12d φYWRYFRYYXR=WXX×YzXYWX-1zYYFR=WX-1zFWXWX-1z×WX-1z
127 18 adantr φYWRYFRYYXR=WXX×YzXYWX-1zYAV
128 22 adantr φYWRYFRYXWWX
129 128 ad2antrr φYWRYFRYYXR=WXX×YzXYWX-1zYXWWX
130 1 127 129 fpwwe2lem3 φYWRYFRYYXR=WXX×YzXYWX-1zYzXWX-1zFWXWX-1z×WX-1z=z
131 73 130 mpdan φYWRYFRYYXR=WXX×YzXYWX-1zYWX-1zFWXWX-1z×WX-1z=z
132 126 131 eqtrd φYWRYFRYYXR=WXX×YzXYWX-1zYYFR=z
133 132 62 eqneltrd φYWRYFRYYXR=WXX×YzXYWX-1zY¬YFRY
134 133 rexlimdvaa φYWRYFRYYXR=WXX×YzXYWX-1zY¬YFRY
135 60 134 sylbid φYWRYFRYYXR=WXX×YzXYwXY¬wWXz¬YFRY
136 37 135 syld φYWRYFRYYXR=WXX×YXY¬YFRY
137 136 necon4ad φYWRYFRYYXR=WXX×YYFRYXY=
138 16 137 mpd φYWRYFRYYXR=WXX×YXY=
139 ssdif0 XYXY=
140 138 139 sylibr φYWRYFRYYXR=WXX×YXY
141 140 ex φYWRYFRYYXR=WXX×YXY
142 3 adantlr φYWRYFRYxArx×xrWexxFrA
143 simprl φYWRYFRYYWR
144 1 17 142 128 143 fpwwe2lem9 φYWRYFRYXYWX=RY×XYXR=WXX×Y
145 15 141 144 mpjaod φYWRYFRYXY
146 13 145 eqssd φYWRYFRYY=X
147 6 adantr φYWRYFRYFunW
148 146 143 eqbrtrrd φYWRYFRYXWR
149 funbrfv FunWXWRWX=R
150 147 148 149 sylc φYWRYFRYWX=R
151 150 eqcomd φYWRYFRYR=WX
152 146 151 jca φYWRYFRYY=XR=WX
153 152 ex φYWRYFRYY=XR=WX
154 1 2 3 4 fpwwe2lem12 φXFWXX
155 22 154 jca φXWWXXFWXX
156 breq12 Y=XR=WXYWRXWWX
157 oveq12 Y=XR=WXYFR=XFWX
158 simpl Y=XR=WXY=X
159 157 158 eleq12d Y=XR=WXYFRYXFWXX
160 156 159 anbi12d Y=XR=WXYWRYFRYXWWXXFWXX
161 155 160 syl5ibrcom φY=XR=WXYWRYFRY
162 153 161 impbid φYWRYFRYY=XR=WX