Metamath Proof Explorer


Theorem ftalem1

Description: Lemma for fta : "growth lemma". There exists some r such that F is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 A=coeffF
ftalem.2 N=degF
ftalem.3 φFPolyS
ftalem.4 φN
ftalem1.5 φE+
ftalem1.6 T=k=0N1AkE
Assertion ftalem1 φrxr<xFxANxN<ExN

Proof

Step Hyp Ref Expression
1 ftalem.1 A=coeffF
2 ftalem.2 N=degF
3 ftalem.3 φFPolyS
4 ftalem.4 φN
5 ftalem1.5 φE+
6 ftalem1.6 T=k=0N1AkE
7 fzfid φ0N1Fin
8 1 coef3 FPolySA:0
9 3 8 syl φA:0
10 elfznn0 k0N1k0
11 ffvelcdm A:0k0Ak
12 9 10 11 syl2an φk0N1Ak
13 12 abscld φk0N1Ak
14 7 13 fsumrecl φk=0N1Ak
15 14 5 rerpdivcld φk=0N1AkE
16 6 15 eqeltrid φT
17 1re 1
18 ifcl T1if1TT1
19 16 17 18 sylancl φif1TT1
20 fzfid φxif1TT1<x0N1Fin
21 9 adantr φxif1TT1<xA:0
22 21 11 sylan φxif1TT1<xk0Ak
23 simprl φxif1TT1<xx
24 expcl xk0xk
25 23 24 sylan φxif1TT1<xk0xk
26 22 25 mulcld φxif1TT1<xk0Akxk
27 10 26 sylan2 φxif1TT1<xk0N1Akxk
28 20 27 fsumcl φxif1TT1<xk=0N1Akxk
29 4 nnnn0d φN0
30 29 adantr φxif1TT1<xN0
31 21 30 ffvelcdmd φxif1TT1<xAN
32 23 30 expcld φxif1TT1<xxN
33 31 32 mulcld φxif1TT1<xANxN
34 3 adantr φxif1TT1<xFPolyS
35 1 2 coeid2 FPolySxFx=k=0NAkxk
36 34 23 35 syl2anc φxif1TT1<xFx=k=0NAkxk
37 nn0uz 0=0
38 30 37 eleqtrdi φxif1TT1<xN0
39 elfznn0 k0Nk0
40 39 26 sylan2 φxif1TT1<xk0NAkxk
41 fveq2 k=NAk=AN
42 oveq2 k=Nxk=xN
43 41 42 oveq12d k=NAkxk=ANxN
44 38 40 43 fsumm1 φxif1TT1<xk=0NAkxk=k=0N1Akxk+ANxN
45 36 44 eqtrd φxif1TT1<xFx=k=0N1Akxk+ANxN
46 28 33 45 mvrraddd φxif1TT1<xFxANxN=k=0N1Akxk
47 46 fveq2d φxif1TT1<xFxANxN=k=0N1Akxk
48 28 abscld φxif1TT1<xk=0N1Akxk
49 27 abscld φxif1TT1<xk0N1Akxk
50 20 49 fsumrecl φxif1TT1<xk=0N1Akxk
51 5 adantr φxif1TT1<xE+
52 51 rpred φxif1TT1<xE
53 23 abscld φxif1TT1<xx
54 53 30 reexpcld φxif1TT1<xxN
55 52 54 remulcld φxif1TT1<xExN
56 20 27 fsumabs φxif1TT1<xk=0N1Akxkk=0N1Akxk
57 14 adantr φxif1TT1<xk=0N1Ak
58 4 adantr φxif1TT1<xN
59 nnm1nn0 NN10
60 58 59 syl φxif1TT1<xN10
61 53 60 reexpcld φxif1TT1<xxN1
62 57 61 remulcld φxif1TT1<xk=0N1AkxN1
63 13 adantlr φxif1TT1<xk0N1Ak
64 61 adantr φxif1TT1<xk0N1xN1
65 63 64 remulcld φxif1TT1<xk0N1AkxN1
66 22 25 absmuld φxif1TT1<xk0Akxk=Akxk
67 10 66 sylan2 φxif1TT1<xk0N1Akxk=Akxk
68 10 25 sylan2 φxif1TT1<xk0N1xk
69 68 abscld φxif1TT1<xk0N1xk
70 10 22 sylan2 φxif1TT1<xk0N1Ak
71 70 absge0d φxif1TT1<xk0N10Ak
72 absexp xk0xk=xk
73 23 10 72 syl2an φxif1TT1<xk0N1xk=xk
74 53 adantr φxif1TT1<xk0N1x
75 17 a1i φxif1TT1<x1
76 19 adantr φxif1TT1<xif1TT1
77 max1 1T1if1TT1
78 17 16 77 sylancr φ1if1TT1
79 78 adantr φxif1TT1<x1if1TT1
80 simprr φxif1TT1<xif1TT1<x
81 75 76 53 79 80 lelttrd φxif1TT1<x1<x
82 75 53 81 ltled φxif1TT1<x1x
83 82 adantr φxif1TT1<xk0N11x
84 elfzuz3 k0N1N1k
85 84 adantl φxif1TT1<xk0N1N1k
86 74 83 85 leexp2ad φxif1TT1<xk0N1xkxN1
87 73 86 eqbrtrd φxif1TT1<xk0N1xkxN1
88 69 64 63 71 87 lemul2ad φxif1TT1<xk0N1AkxkAkxN1
89 67 88 eqbrtrd φxif1TT1<xk0N1AkxkAkxN1
90 20 49 65 89 fsumle φxif1TT1<xk=0N1Akxkk=0N1AkxN1
91 61 recnd φxif1TT1<xxN1
92 63 recnd φxif1TT1<xk0N1Ak
93 20 91 92 fsummulc1 φxif1TT1<xk=0N1AkxN1=k=0N1AkxN1
94 90 93 breqtrrd φxif1TT1<xk=0N1Akxkk=0N1AkxN1
95 16 adantr φxif1TT1<xT
96 max2 1TTif1TT1
97 17 16 96 sylancr φTif1TT1
98 97 adantr φxif1TT1<xTif1TT1
99 95 76 53 98 80 lelttrd φxif1TT1<xT<x
100 6 99 eqbrtrrid φxif1TT1<xk=0N1AkE<x
101 57 53 51 ltdivmuld φxif1TT1<xk=0N1AkE<xk=0N1Ak<Ex
102 100 101 mpbid φxif1TT1<xk=0N1Ak<Ex
103 52 53 remulcld φxif1TT1<xEx
104 60 nn0zd φxif1TT1<xN1
105 0red φxif1TT1<x0
106 0lt1 0<1
107 106 a1i φxif1TT1<x0<1
108 105 75 53 107 81 lttrd φxif1TT1<x0<x
109 expgt0 xN10<x0<xN1
110 53 104 108 109 syl3anc φxif1TT1<x0<xN1
111 ltmul1 k=0N1AkExxN10<xN1k=0N1Ak<Exk=0N1AkxN1<ExxN1
112 57 103 61 110 111 syl112anc φxif1TT1<xk=0N1Ak<Exk=0N1AkxN1<ExxN1
113 102 112 mpbid φxif1TT1<xk=0N1AkxN1<ExxN1
114 53 recnd φxif1TT1<xx
115 expm1t xNxN=xN1x
116 114 58 115 syl2anc φxif1TT1<xxN=xN1x
117 91 114 mulcomd φxif1TT1<xxN1x=xxN1
118 116 117 eqtrd φxif1TT1<xxN=xxN1
119 118 oveq2d φxif1TT1<xExN=ExxN1
120 52 recnd φxif1TT1<xE
121 120 114 91 mulassd φxif1TT1<xExxN1=ExxN1
122 119 121 eqtr4d φxif1TT1<xExN=ExxN1
123 113 122 breqtrrd φxif1TT1<xk=0N1AkxN1<ExN
124 50 62 55 94 123 lelttrd φxif1TT1<xk=0N1Akxk<ExN
125 48 50 55 56 124 lelttrd φxif1TT1<xk=0N1Akxk<ExN
126 47 125 eqbrtrd φxif1TT1<xFxANxN<ExN
127 126 expr φxif1TT1<xFxANxN<ExN
128 127 ralrimiva φxif1TT1<xFxANxN<ExN
129 breq1 r=if1TT1r<xif1TT1<x
130 129 rspceaimv if1TT1xif1TT1<xFxANxN<ExNrxr<xFxANxN<ExN
131 19 128 130 syl2anc φrxr<xFxANxN<ExN