Metamath Proof Explorer


Theorem iblspltprt

Description: If a function is integrable on any interval of a partition, then it is integrable on the whole interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblspltprt.1 tφ
iblspltprt.2 φM
iblspltprt.3 φNM+1
iblspltprt.4 φiMNPi
iblspltprt.5 φiM..^NPi<Pi+1
iblspltprt.6 φtPMPNA
iblspltprt.7 φiM..^NtPiPi+1A𝐿1
Assertion iblspltprt φtPMPNA𝐿1

Proof

Step Hyp Ref Expression
1 iblspltprt.1 tφ
2 iblspltprt.2 φM
3 iblspltprt.3 φNM+1
4 iblspltprt.4 φiMNPi
5 iblspltprt.5 φiM..^NPi<Pi+1
6 iblspltprt.6 φtPMPNA
7 iblspltprt.7 φiM..^NtPiPi+1A𝐿1
8 2 peano2zd φM+1
9 eluzelz NM+1N
10 3 9 syl φN
11 eluzle NM+1M+1N
12 3 11 syl φM+1N
13 10 zred φN
14 13 leidd φNN
15 8 10 10 12 14 elfzd φNM+1N
16 fveq2 j=M+1Pj=PM+1
17 16 oveq2d j=M+1PMPj=PMPM+1
18 17 mpteq1d j=M+1tPMPjA=tPMPM+1A
19 18 eleq1d j=M+1tPMPjA𝐿1tPMPM+1A𝐿1
20 19 imbi2d j=M+1φtPMPjA𝐿1φtPMPM+1A𝐿1
21 fveq2 j=kPj=Pk
22 21 oveq2d j=kPMPj=PMPk
23 22 mpteq1d j=ktPMPjA=tPMPkA
24 23 eleq1d j=ktPMPjA𝐿1tPMPkA𝐿1
25 24 imbi2d j=kφtPMPjA𝐿1φtPMPkA𝐿1
26 fveq2 j=k+1Pj=Pk+1
27 26 oveq2d j=k+1PMPj=PMPk+1
28 27 mpteq1d j=k+1tPMPjA=tPMPk+1A
29 28 eleq1d j=k+1tPMPjA𝐿1tPMPk+1A𝐿1
30 29 imbi2d j=k+1φtPMPjA𝐿1φtPMPk+1A𝐿1
31 fveq2 j=NPj=PN
32 31 oveq2d j=NPMPj=PMPN
33 32 mpteq1d j=NtPMPjA=tPMPNA
34 33 eleq1d j=NtPMPjA𝐿1tPMPNA𝐿1
35 34 imbi2d j=NφtPMPjA𝐿1φtPMPNA𝐿1
36 uzid MMM
37 2 36 syl φMM
38 2 zred φM
39 1red φ1
40 38 39 readdcld φM+1
41 38 ltp1d φM<M+1
42 38 40 13 41 12 ltletrd φM<N
43 elfzo2 MM..^NMMNM<N
44 37 10 42 43 syl3anbrc φMM..^N
45 fveq2 i=MPi=PM
46 fvoveq1 i=MPi+1=PM+1
47 45 46 oveq12d i=MPiPi+1=PMPM+1
48 47 mpteq1d i=MtPiPi+1A=tPMPM+1A
49 48 eleq1d i=MtPiPi+1A𝐿1tPMPM+1A𝐿1
50 49 imbi2d i=MφtPiPi+1A𝐿1φtPMPM+1A𝐿1
51 7 expcom iM..^NφtPiPi+1A𝐿1
52 50 51 vtoclga MM..^NφtPMPM+1A𝐿1
53 44 52 mpcom φtPMPM+1A𝐿1
54 53 a1i NM+1φtPMPM+1A𝐿1
55 nfv tkM+1..^N
56 nfmpt1 _ttPMPkA
57 56 nfel1 ttPMPkA𝐿1
58 1 57 nfim tφtPMPkA𝐿1
59 55 58 1 nf3an tkM+1..^NφtPMPkA𝐿1φ
60 simp3 kM+1..^NφtPMPkA𝐿1φφ
61 simp1 kM+1..^NφtPMPkA𝐿1φkM+1..^N
62 38 leidd φMM
63 38 13 42 ltled φMN
64 2 10 2 62 63 elfzd φMMN
65 64 ancli φφMMN
66 eleq1 i=MiMNMMN
67 66 anbi2d i=MφiMNφMMN
68 45 eleq1d i=MPiPM
69 67 68 imbi12d i=MφiMNPiφMMNPM
70 69 4 vtoclg MMNφMMNPM
71 64 65 70 sylc φPM
72 71 adantr φkM+1..^NPM
73 72 rexrd φkM+1..^NPM*
74 simpl φkM+1..^Nφ
75 elfzoelz kM+1..^Nk
76 75 adantl φkM+1..^Nk
77 38 adantr φkM+1..^NM
78 76 zred φkM+1..^Nk
79 40 adantr φkM+1..^NM+1
80 41 adantr φkM+1..^NM<M+1
81 elfzole1 kM+1..^NM+1k
82 81 adantl φkM+1..^NM+1k
83 77 79 78 80 82 ltletrd φkM+1..^NM<k
84 77 78 83 ltled φkM+1..^NMk
85 13 adantr φkM+1..^NN
86 elfzolt2 kM+1..^Nk<N
87 86 adantl φkM+1..^Nk<N
88 78 85 87 ltled φkM+1..^NkN
89 2 10 jca φMN
90 89 adantr φkM+1..^NMN
91 elfz1 MNkMNkMkkN
92 90 91 syl φkM+1..^NkMNkMkkN
93 76 84 88 92 mpbir3and φkM+1..^NkMN
94 eleq1 i=kiMNkMN
95 94 anbi2d i=kφiMNφkMN
96 fveq2 i=kPi=Pk
97 96 eleq1d i=kPiPk
98 95 97 imbi12d i=kφiMNPiφkMNPk
99 98 4 chvarvv φkMNPk
100 74 93 99 syl2anc φkM+1..^NPk
101 100 rexrd φkM+1..^NPk*
102 76 peano2zd φkM+1..^Nk+1
103 102 zred φkM+1..^Nk+1
104 1red φkM+1..^N1
105 77 78 104 83 ltadd1dd φkM+1..^NM+1<k+1
106 77 79 103 80 105 lttrd φkM+1..^NM<k+1
107 77 103 106 ltled φkM+1..^NMk+1
108 zltp1le kNk<Nk+1N
109 75 10 108 syl2anr φkM+1..^Nk<Nk+1N
110 87 109 mpbid φkM+1..^Nk+1N
111 elfz1 MNk+1MNk+1Mk+1k+1N
112 90 111 syl φkM+1..^Nk+1MNk+1Mk+1k+1N
113 102 107 110 112 mpbir3and φkM+1..^Nk+1MN
114 74 113 jca φkM+1..^Nφk+1MN
115 eleq1 i=k+1iMNk+1MN
116 115 anbi2d i=k+1φiMNφk+1MN
117 fveq2 i=k+1Pi=Pk+1
118 117 eleq1d i=k+1PiPk+1
119 116 118 imbi12d i=k+1φiMNPiφk+1MNPk+1
120 119 4 vtoclg k+1MNφk+1MNPk+1
121 113 114 120 sylc φkM+1..^NPk+1
122 121 rexrd φkM+1..^NPk+1*
123 eluz MkkMMk
124 2 75 123 syl2an φkM+1..^NkMMk
125 84 124 mpbird φkM+1..^NkM
126 simpll φkM+1..^NiMkφ
127 elfzelz iMki
128 127 adantl φkM+1..^NiMki
129 elfzle1 iMkMi
130 129 adantl φkM+1..^NiMkMi
131 128 zred φkM+1..^NiMki
132 126 13 syl φkM+1..^NiMkN
133 78 adantr φkM+1..^NiMkk
134 elfzle2 iMkik
135 134 adantl φkM+1..^NiMkik
136 87 adantr φkM+1..^NiMkk<N
137 131 133 132 135 136 lelttrd φkM+1..^NiMki<N
138 131 132 137 ltled φkM+1..^NiMkiN
139 elfz1 MNiMNiMiiN
140 126 89 139 3syl φkM+1..^NiMkiMNiMiiN
141 128 130 138 140 mpbir3and φkM+1..^NiMkiMN
142 126 141 4 syl2anc φkM+1..^NiMkPi
143 simpll φkM+1..^NiMk1φ
144 elfzelz iMk1i
145 144 adantl φkM+1..^NiMk1i
146 elfzle1 iMk1Mi
147 146 adantl φkM+1..^NiMk1Mi
148 145 zred φkM+1..^NiMk1i
149 143 13 syl φkM+1..^NiMk1N
150 78 adantr φkM+1..^NiMk1k
151 1red φkM+1..^NiMk11
152 150 151 resubcld φkM+1..^NiMk1k1
153 elfzle2 iMk1ik1
154 153 adantl φkM+1..^NiMk1ik1
155 75 zred kM+1..^Nk
156 1red kM+1..^N1
157 155 156 resubcld kM+1..^Nk1
158 elfzoel2 kM+1..^NN
159 158 zred kM+1..^NN
160 155 ltm1d kM+1..^Nk1<k
161 157 155 159 160 86 lttrd kM+1..^Nk1<N
162 161 ad2antlr φkM+1..^NiMk1k1<N
163 148 152 149 154 162 lelttrd φkM+1..^NiMk1i<N
164 148 149 163 ltled φkM+1..^NiMk1iN
165 143 89 139 3syl φkM+1..^NiMk1iMNiMiiN
166 145 147 164 165 mpbir3and φkM+1..^NiMk1iMN
167 143 166 4 syl2anc φkM+1..^NiMk1Pi
168 145 peano2zd φkM+1..^NiMk1i+1
169 elfzel1 iMk1M
170 169 zred iMk1M
171 144 zred iMk1i
172 1red iMk11
173 171 172 readdcld iMk1i+1
174 171 ltp1d iMk1i<i+1
175 170 171 173 146 174 lelttrd iMk1M<i+1
176 170 173 175 ltled iMk1Mi+1
177 176 adantl φkM+1..^NiMk1Mi+1
178 143 3 9 3syl φkM+1..^NiMk1N
179 zltp1le iNi<Ni+1N
180 145 178 179 syl2anc φkM+1..^NiMk1i<Ni+1N
181 163 180 mpbid φkM+1..^NiMk1i+1N
182 elfz1 MNi+1MNi+1Mi+1i+1N
183 143 89 182 3syl φkM+1..^NiMk1i+1MNi+1Mi+1i+1N
184 168 177 181 183 mpbir3and φkM+1..^NiMk1i+1MN
185 143 184 jca φkM+1..^NiMk1φi+1MN
186 eleq1 k=i+1kMNi+1MN
187 186 anbi2d k=i+1φkMNφi+1MN
188 fveq2 k=i+1Pk=Pi+1
189 188 eleq1d k=i+1PkPi+1
190 187 189 imbi12d k=i+1φkMNPkφi+1MNPi+1
191 190 99 vtoclg i+1MNφi+1MNPi+1
192 184 185 191 sylc φkM+1..^NiMk1Pi+1
193 elfzuz iMk1iM
194 193 adantl φkM+1..^NiMk1iM
195 elfzo2 iM..^NiMNi<N
196 194 178 163 195 syl3anbrc φkM+1..^NiMk1iM..^N
197 143 196 5 syl2anc φkM+1..^NiMk1Pi<Pi+1
198 167 192 197 ltled φkM+1..^NiMk1PiPi+1
199 125 142 198 monoord φkM+1..^NPMPk
200 158 adantl φkM+1..^NN
201 elfzo2 kM..^NkMNk<N
202 125 200 87 201 syl3anbrc φkM+1..^NkM..^N
203 eleq1 i=kiM..^NkM..^N
204 203 anbi2d i=kφiM..^NφkM..^N
205 fvoveq1 i=kPi+1=Pk+1
206 96 205 breq12d i=kPi<Pi+1Pk<Pk+1
207 204 206 imbi12d i=kφiM..^NPi<Pi+1φkM..^NPk<Pk+1
208 207 5 chvarvv φkM..^NPk<Pk+1
209 74 202 208 syl2anc φkM+1..^NPk<Pk+1
210 100 121 209 ltled φkM+1..^NPkPk+1
211 iccintsng PM*Pk*Pk+1*PMPkPkPk+1PMPkPkPk+1=Pk
212 73 101 122 199 210 211 syl32anc φkM+1..^NPMPkPkPk+1=Pk
213 212 fveq2d φkM+1..^Nvol*PMPkPkPk+1=vol*Pk
214 ovolsn Pkvol*Pk=0
215 100 214 syl φkM+1..^Nvol*Pk=0
216 213 215 eqtrd φkM+1..^Nvol*PMPkPkPk+1=0
217 60 61 216 syl2anc kM+1..^NφtPMPkA𝐿1φvol*PMPkPkPk+1=0
218 72 121 100 199 210 eliccd φkM+1..^NPkPMPk+1
219 72 121 218 3jca φkM+1..^NPMPk+1PkPMPk+1
220 60 61 219 syl2anc kM+1..^NφtPMPkA𝐿1φPMPk+1PkPMPk+1
221 iccsplit PMPk+1PkPMPk+1PMPk+1=PMPkPkPk+1
222 220 221 syl kM+1..^NφtPMPkA𝐿1φPMPk+1=PMPkPkPk+1
223 simpl3 kM+1..^NφtPMPkA𝐿1φtPMPk+1φ
224 simpl1 kM+1..^NφtPMPkA𝐿1φtPMPk+1kM+1..^N
225 simpr kM+1..^NφtPMPkA𝐿1φtPMPk+1tPMPk+1
226 simp1 φkM+1..^NtPMPk+1φ
227 eliccxr tPMPk+1t*
228 227 3ad2ant3 φkM+1..^NtPMPk+1t*
229 71 rexrd φPM*
230 229 3ad2ant1 φkM+1..^NtPMPk+1PM*
231 122 3adant3 φkM+1..^NtPMPk+1Pk+1*
232 simp3 φkM+1..^NtPMPk+1tPMPk+1
233 iccgelb PM*Pk+1*tPMPk+1PMt
234 230 231 232 233 syl3anc φkM+1..^NtPMPk+1PMt
235 72 121 jca φkM+1..^NPMPk+1
236 235 3adant3 φkM+1..^NtPMPk+1PMPk+1
237 iccssre PMPk+1PMPk+1
238 237 sseld PMPk+1tPMPk+1t
239 236 232 238 sylc φkM+1..^NtPMPk+1t
240 121 3adant3 φkM+1..^NtPMPk+1Pk+1
241 2 10 10 63 14 elfzd φNMN
242 241 ancli φφNMN
243 eleq1 i=NiMNNMN
244 243 anbi2d i=NφiMNφNMN
245 fveq2 i=NPi=PN
246 245 eleq1d i=NPiPN
247 244 246 imbi12d i=NφiMNPiφNMNPN
248 247 4 vtoclg NφNMNPN
249 10 242 248 sylc φPN
250 249 3ad2ant1 φkM+1..^NtPMPk+1PN
251 elicc1 PM*Pk+1*tPMPk+1t*PMttPk+1
252 230 231 251 syl2anc φkM+1..^NtPMPk+1tPMPk+1t*PMttPk+1
253 232 252 mpbid φkM+1..^NtPMPk+1t*PMttPk+1
254 253 simp3d φkM+1..^NtPMPk+1tPk+1
255 elfzop1le2 kM+1..^Nk+1N
256 75 peano2zd kM+1..^Nk+1
257 eluz k+1NNk+1k+1N
258 256 158 257 syl2anc kM+1..^NNk+1k+1N
259 255 258 mpbird kM+1..^NNk+1
260 259 adantl φkM+1..^NNk+1
261 simpll φkM+1..^Nik+1Nφ
262 elfzelz ik+1Ni
263 262 adantl φkM+1..^Nik+1Ni
264 261 38 syl φkM+1..^Nik+1NM
265 263 zred φkM+1..^Nik+1Ni
266 78 adantr φkM+1..^Nik+1Nk
267 83 adantr φkM+1..^Nik+1NM<k
268 155 adantr kM+1..^Nik+1Nk
269 1red kM+1..^Nik+1N1
270 268 269 readdcld kM+1..^Nik+1Nk+1
271 262 zred ik+1Ni
272 271 adantl kM+1..^Nik+1Ni
273 268 ltp1d kM+1..^Nik+1Nk<k+1
274 elfzle1 ik+1Nk+1i
275 274 adantl kM+1..^Nik+1Nk+1i
276 268 270 272 273 275 ltletrd kM+1..^Nik+1Nk<i
277 276 adantll φkM+1..^Nik+1Nk<i
278 264 266 265 267 277 lttrd φkM+1..^Nik+1NM<i
279 264 265 278 ltled φkM+1..^Nik+1NMi
280 elfzle2 ik+1NiN
281 280 adantl φkM+1..^Nik+1NiN
282 261 89 139 3syl φkM+1..^Nik+1NiMNiMiiN
283 263 279 281 282 mpbir3and φkM+1..^Nik+1NiMN
284 261 283 4 syl2anc φkM+1..^Nik+1NPi
285 simpll φkM+1..^Nik+1N1φ
286 elfzelz ik+1N1i
287 286 adantl φkM+1..^Nik+1N1i
288 285 38 syl φkM+1..^Nik+1N1M
289 287 zred φkM+1..^Nik+1N1i
290 78 adantr φkM+1..^Nik+1N1k
291 83 adantr φkM+1..^Nik+1N1M<k
292 155 adantr kM+1..^Nik+1N1k
293 1red kM+1..^Nik+1N11
294 292 293 readdcld kM+1..^Nik+1N1k+1
295 286 zred ik+1N1i
296 295 adantl kM+1..^Nik+1N1i
297 292 ltp1d kM+1..^Nik+1N1k<k+1
298 elfzle1 ik+1N1k+1i
299 298 adantl kM+1..^Nik+1N1k+1i
300 292 294 296 297 299 ltletrd kM+1..^Nik+1N1k<i
301 300 adantll φkM+1..^Nik+1N1k<i
302 288 290 289 291 301 lttrd φkM+1..^Nik+1N1M<i
303 288 289 302 ltled φkM+1..^Nik+1N1Mi
304 295 adantl φik+1N1i
305 13 adantr φik+1N1N
306 1red φik+1N11
307 305 306 resubcld φik+1N1N1
308 elfzle2 ik+1N1iN1
309 308 adantl φik+1N1iN1
310 305 ltm1d φik+1N1N1<N
311 304 307 305 309 310 lelttrd φik+1N1i<N
312 304 305 311 ltled φik+1N1iN
313 312 adantlr φkM+1..^Nik+1N1iN
314 285 89 139 3syl φkM+1..^Nik+1N1iMNiMiiN
315 287 303 313 314 mpbir3and φkM+1..^Nik+1N1iMN
316 285 315 4 syl2anc φkM+1..^Nik+1N1Pi
317 287 peano2zd φkM+1..^Nik+1N1i+1
318 317 zred φkM+1..^Nik+1N1i+1
319 296 293 readdcld kM+1..^Nik+1N1i+1
320 292 296 300 ltled kM+1..^Nik+1N1ki
321 292 296 293 320 leadd1dd kM+1..^Nik+1N1k+1i+1
322 292 294 319 297 321 ltletrd kM+1..^Nik+1N1k<i+1
323 322 adantll φkM+1..^Nik+1N1k<i+1
324 288 290 318 291 323 lttrd φkM+1..^Nik+1N1M<i+1
325 288 318 324 ltled φkM+1..^Nik+1N1Mi+1
326 286 10 179 syl2anr φik+1N1i<Ni+1N
327 311 326 mpbid φik+1N1i+1N
328 327 adantlr φkM+1..^Nik+1N1i+1N
329 285 89 182 3syl φkM+1..^Nik+1N1i+1MNi+1Mi+1i+1N
330 317 325 328 329 mpbir3and φkM+1..^Nik+1N1i+1MN
331 285 330 jca φkM+1..^Nik+1N1φi+1MN
332 330 331 191 sylc φkM+1..^Nik+1N1Pi+1
333 285 2 syl φkM+1..^Nik+1N1M
334 eluz MiiMMi
335 333 287 334 syl2anc φkM+1..^Nik+1N1iMMi
336 303 335 mpbird φkM+1..^Nik+1N1iM
337 285 3 9 3syl φkM+1..^Nik+1N1N
338 311 adantlr φkM+1..^Nik+1N1i<N
339 336 337 338 195 syl3anbrc φkM+1..^Nik+1N1iM..^N
340 285 339 5 syl2anc φkM+1..^Nik+1N1Pi<Pi+1
341 316 332 340 ltled φkM+1..^Nik+1N1PiPi+1
342 260 284 341 monoord φkM+1..^NPk+1PN
343 342 3adant3 φkM+1..^NtPMPk+1Pk+1PN
344 239 240 250 254 343 letrd φkM+1..^NtPMPk+1tPN
345 250 rexrd φkM+1..^NtPMPk+1PN*
346 elicc1 PM*PN*tPMPNt*PMttPN
347 230 345 346 syl2anc φkM+1..^NtPMPk+1tPMPNt*PMttPN
348 228 234 344 347 mpbir3and φkM+1..^NtPMPk+1tPMPN
349 226 348 6 syl2anc φkM+1..^NtPMPk+1A
350 223 224 225 349 syl3anc kM+1..^NφtPMPkA𝐿1φtPMPk+1A
351 simp2 kM+1..^NφtPMPkA𝐿1φφtPMPkA𝐿1
352 60 351 mpd kM+1..^NφtPMPkA𝐿1φtPMPkA𝐿1
353 60 61 jca kM+1..^NφtPMPkA𝐿1φφkM+1..^N
354 74 202 jca φkM+1..^NφkM..^N
355 96 205 oveq12d i=kPiPi+1=PkPk+1
356 355 mpteq1d i=ktPiPi+1A=tPkPk+1A
357 356 eleq1d i=ktPiPi+1A𝐿1tPkPk+1A𝐿1
358 204 357 imbi12d i=kφiM..^NtPiPi+1A𝐿1φkM..^NtPkPk+1A𝐿1
359 358 7 chvarvv φkM..^NtPkPk+1A𝐿1
360 353 354 359 3syl kM+1..^NφtPMPkA𝐿1φtPkPk+1A𝐿1
361 59 217 222 350 352 360 iblsplitf kM+1..^NφtPMPkA𝐿1φtPMPk+1A𝐿1
362 361 3exp kM+1..^NφtPMPkA𝐿1φtPMPk+1A𝐿1
363 20 25 30 35 54 362 fzind2 NM+1NφtPMPNA𝐿1
364 15 363 mpcom φtPMPNA𝐿1