Metamath Proof Explorer


Theorem incexc2

Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017)

Ref Expression
Assertion incexc2 AFinAFinA=n=1A1n1sk𝒫A|k=ns

Proof

Step Hyp Ref Expression
1 incexc AFinAFinA=s𝒫A1s1s
2 hashcl AFinA0
3 2 ad2antrr AFinAFink𝒫AA0
4 3 nn0zd AFinAFink𝒫AA
5 simpl AFinAFinAFin
6 elpwi k𝒫AkA
7 ssdomg AFinkAkA
8 7 imp AFinkAkA
9 5 6 8 syl2an AFinAFink𝒫AkA
10 hashdomi kAkA
11 9 10 syl AFinAFink𝒫AkA
12 fznn Ak1AkkA
13 12 rbaibd AkAk1Ak
14 4 11 13 syl2anc AFinAFink𝒫Ak1Ak
15 ssfi AFinkAkFin
16 5 6 15 syl2an AFinAFink𝒫AkFin
17 hashnncl kFinkk
18 16 17 syl AFinAFink𝒫Akk
19 14 18 bitr2d AFinAFink𝒫Akk1A
20 df-ne k¬k=
21 risset k1An1An=k
22 19 20 21 3bitr3g AFinAFink𝒫A¬k=n1An=k
23 velsn kk=
24 23 notbii ¬k¬k=
25 eqcom k=nn=k
26 25 rexbii n1Ak=nn1An=k
27 22 24 26 3bitr4g AFinAFink𝒫A¬kn1Ak=n
28 27 rabbidva AFinAFink𝒫A|¬k=k𝒫A|n1Ak=n
29 dfdif2 𝒫A=k𝒫A|¬k
30 iunrab n=1Ak𝒫A|k=n=k𝒫A|n1Ak=n
31 28 29 30 3eqtr4g AFinAFin𝒫A=n=1Ak𝒫A|k=n
32 31 sumeq1d AFinAFins𝒫A1s1s=sn=1Ak𝒫A|k=n1s1s
33 1 32 eqtrd AFinAFinA=sn=1Ak𝒫A|k=n1s1s
34 fzfid AFinAFin1AFin
35 simpll AFinAFinn1AAFin
36 pwfi AFin𝒫AFin
37 35 36 sylib AFinAFinn1A𝒫AFin
38 ssrab2 k𝒫A|k=n𝒫A
39 ssfi 𝒫AFink𝒫A|k=n𝒫Ak𝒫A|k=nFin
40 37 38 39 sylancl AFinAFinn1Ak𝒫A|k=nFin
41 fveqeq2 k=sk=ns=n
42 41 elrab sk𝒫A|k=ns𝒫As=n
43 42 simprbi sk𝒫A|k=ns=n
44 43 adantl AFinAFinn1Ask𝒫A|k=ns=n
45 44 ralrimiva AFinAFinn1Ask𝒫A|k=ns=n
46 45 ralrimiva AFinAFinn1Ask𝒫A|k=ns=n
47 invdisj n1Ask𝒫A|k=ns=nDisjn=1Ak𝒫A|k=n
48 46 47 syl AFinAFinDisjn=1Ak𝒫A|k=n
49 44 oveq1d AFinAFinn1Ask𝒫A|k=ns1=n1
50 49 oveq2d AFinAFinn1Ask𝒫A|k=n1s1=1n1
51 50 oveq1d AFinAFinn1Ask𝒫A|k=n1s1s=1n1s
52 1cnd AFinAFinn1A1
53 52 negcld AFinAFinn1A1
54 elfznn n1An
55 54 adantl AFinAFinn1An
56 nnm1nn0 nn10
57 55 56 syl AFinAFinn1An10
58 53 57 expcld AFinAFinn1A1n1
59 58 adantr AFinAFinn1Ask𝒫A|k=n1n1
60 unifi AFinAFinAFin
61 60 ad2antrr AFinAFinn1Ask𝒫A|k=nAFin
62 55 adantr AFinAFinn1Ask𝒫A|k=nn
63 44 62 eqeltrd AFinAFinn1Ask𝒫A|k=ns
64 35 adantr AFinAFinn1Ask𝒫A|k=nAFin
65 elrabi sk𝒫A|k=ns𝒫A
66 65 adantl AFinAFinn1Ask𝒫A|k=ns𝒫A
67 elpwi s𝒫AsA
68 66 67 syl AFinAFinn1Ask𝒫A|k=nsA
69 64 68 ssfid AFinAFinn1Ask𝒫A|k=nsFin
70 hashnncl sFinss
71 69 70 syl AFinAFinn1Ask𝒫A|k=nss
72 63 71 mpbid AFinAFinn1Ask𝒫A|k=ns
73 intssuni sss
74 72 73 syl AFinAFinn1Ask𝒫A|k=nss
75 68 unissd AFinAFinn1Ask𝒫A|k=nsA
76 74 75 sstrd AFinAFinn1Ask𝒫A|k=nsA
77 61 76 ssfid AFinAFinn1Ask𝒫A|k=nsFin
78 hashcl sFins0
79 77 78 syl AFinAFinn1Ask𝒫A|k=ns0
80 79 nn0cnd AFinAFinn1Ask𝒫A|k=ns
81 59 80 mulcld AFinAFinn1Ask𝒫A|k=n1n1s
82 51 81 eqeltrd AFinAFinn1Ask𝒫A|k=n1s1s
83 82 anasss AFinAFinn1Ask𝒫A|k=n1s1s
84 34 40 48 83 fsumiun AFinAFinsn=1Ak𝒫A|k=n1s1s=n=1Ask𝒫A|k=n1s1s
85 51 sumeq2dv AFinAFinn1Ask𝒫A|k=n1s1s=sk𝒫A|k=n1n1s
86 40 58 80 fsummulc2 AFinAFinn1A1n1sk𝒫A|k=ns=sk𝒫A|k=n1n1s
87 85 86 eqtr4d AFinAFinn1Ask𝒫A|k=n1s1s=1n1sk𝒫A|k=ns
88 87 sumeq2dv AFinAFinn=1Ask𝒫A|k=n1s1s=n=1A1n1sk𝒫A|k=ns
89 33 84 88 3eqtrd AFinAFinA=n=1A1n1sk𝒫A|k=ns