Metamath Proof Explorer


Theorem lcmineqlem10

Description: Induction step of lcmineqlem13 (deduction form). (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem10.1 φM
lcmineqlem10.2 φN
lcmineqlem10.3 φM<N
Assertion lcmineqlem10 φ01xM+1-11xNM+1dx=MNM01xM11xNMdx

Proof

Step Hyp Ref Expression
1 lcmineqlem10.1 φM
2 lcmineqlem10.2 φN
3 lcmineqlem10.3 φM<N
4 2 nncnd φN
5 1 nncnd φM
6 4 5 subcld φNM
7 elunitcn x01x
8 1 nnnn0d φM0
9 expcl xM0xM
10 8 9 sylan2 xφxM
11 10 ancoms φxxM
12 7 11 sylan2 φx01xM
13 1cnd φx1
14 simpr φxx
15 13 14 subcld φx1x
16 1 nnzd φM
17 2 nnzd φN
18 znnsub MNM<NNM
19 16 17 18 syl2anc φM<NNM
20 3 19 mpbid φNM
21 nnm1nn0 NMN-M-10
22 20 21 syl φN-M-10
23 22 adantr φxN-M-10
24 15 23 expcld φx1xN-M-1
25 7 24 sylan2 φx011xN-M-1
26 12 25 mulcld φx01xM1xN-M-1
27 0red φ0
28 1red φ1
29 expcncf M0xxM:cn
30 8 29 syl φxxM:cn
31 1nn 1
32 31 a1i φ1
33 20 nnge1d φ1NM
34 32 20 33 lcmineqlem9 φx1xN-M-1:cn
35 30 34 mulcncf φxxM1xN-M-1:cn
36 35 resclunitintvd φx01xM1xN-M-1:01cn
37 cnicciblnc 01x01xM1xN-M-1:01cnx01xM1xN-M-1𝐿1
38 27 28 36 37 syl3anc φx01xM1xN-M-1𝐿1
39 26 38 itgcl φ01xM1xN-M-1dx
40 6 39 mulneg1d φNM01xM1xN-M-1dx=NM01xM1xN-M-1dx
41 6 negcld φNM
42 41 26 38 itgmulc2 φNM01xM1xN-M-1dx=01NMxM1xN-M-1dx
43 4 adantr φxN
44 5 adantr φxM
45 43 44 subcld φxNM
46 45 negcld φxNM
47 11 46 24 mul12d φxxMNM1xN-M-1=NMxM1xN-M-1
48 7 47 sylan2 φx01xMNM1xN-M-1=NMxM1xN-M-1
49 48 itgeq2dv φ01xMNM1xN-M-1dx=01NMxM1xN-M-1dx
50 4 adantr φx01N
51 5 adantr φx01M
52 50 51 subcld φx01NM
53 52 negcld φx01NM
54 53 25 mulcld φx01NM1xN-M-1
55 12 54 mulcld φx01xMNM1xN-M-1
56 27 28 55 itgioo φ01xMNM1xN-M-1dx=01xMNM1xN-M-1dx
57 0le1 01
58 57 a1i φ01
59 30 resclunitintvd φx01xM:01cn
60 1 nnred φM
61 2 nnred φN
62 ltle MNM<NMN
63 60 61 62 syl2anc φM<NMN
64 3 63 mpd φMN
65 1 2 64 lcmineqlem9 φx1xNM:cn
66 65 resclunitintvd φx011xNM:01cn
67 ssid
68 cncfmptc MxM:cn
69 67 67 68 mp3an23 MxM:cn
70 5 69 syl φxM:cn
71 70 resopunitintvd φx01M:01cn
72 nnm1nn0 MM10
73 expcncf M10xxM1:cn
74 1 72 73 3syl φxxM1:cn
75 74 resopunitintvd φx01xM1:01cn
76 71 75 mulcncf φx01MxM1:01cn
77 cncfmptc NMxNM:cn
78 67 67 77 mp3an23 NMxNM:cn
79 41 78 syl φxNM:cn
80 79 resopunitintvd φx01NM:01cn
81 34 resopunitintvd φx011xN-M-1:01cn
82 80 81 mulcncf φx01NM1xN-M-1:01cn
83 ioossicc 0101
84 83 a1i φ0101
85 ioombl 01domvol
86 85 a1i φ01domvol
87 79 34 mulcncf φxNM1xN-M-1:cn
88 30 87 mulcncf φxxMNM1xN-M-1:cn
89 88 resclunitintvd φx01xMNM1xN-M-1:01cn
90 cnicciblnc 01x01xMNM1xN-M-1:01cnx01xMNM1xN-M-1𝐿1
91 27 28 89 90 syl3anc φx01xMNM1xN-M-1𝐿1
92 84 86 55 91 iblss φx01xMNM1xN-M-1𝐿1
93 1 72 syl φM10
94 expcl xM10xM1
95 93 94 sylan2 xφxM1
96 95 ancoms φxxM1
97 7 96 sylan2 φx01xM1
98 51 97 mulcld φx01MxM1
99 20 nnnn0d φNM0
100 99 adantr φxNM0
101 15 100 expcld φx1xNM
102 7 101 sylan2 φx011xNM
103 98 102 mulcld φx01MxM11xNM
104 70 74 mulcncf φxMxM1:cn
105 104 65 mulcncf φxMxM11xNM:cn
106 105 resclunitintvd φx01MxM11xNM:01cn
107 cnicciblnc 01x01MxM11xNM:01cnx01MxM11xNM𝐿1
108 27 28 106 107 syl3anc φx01MxM11xNM𝐿1
109 84 86 103 108 iblss φx01MxM11xNM𝐿1
110 dvexp MdxxMdx=xMxM1
111 1 110 syl φdxxMdx=xMxM1
112 44 96 mulcld φxMxM1
113 111 11 112 resdvopclptsd φdx01xMdx=x01MxM1
114 1 2 3 lcmineqlem8 φdx1xNMdx=xNM1xN-M-1
115 46 24 mulcld φxNM1xN-M-1
116 114 101 115 resdvopclptsd φdx011xNMdx=x01NM1xN-M-1
117 oveq1 x=0xM=0M
118 117 adantl φx=0xM=0M
119 1 0expd φ0M=0
120 119 adantr φx=00M=0
121 118 120 eqtrd φx=0xM=0
122 121 oveq1d φx=0xM1xNM=01xNM
123 0cn 0
124 eleq1 x=0x0
125 123 124 mpbiri x=0x
126 101 mul02d φx01xNM=0
127 125 126 sylan2 φx=001xNM=0
128 122 127 eqtrd φx=0xM1xNM=0
129 oveq2 x=11x=11
130 1m1e0 11=0
131 129 130 eqtrdi x=11x=0
132 131 oveq1d x=11xNM=0NM
133 132 adantl φx=11xNM=0NM
134 20 0expd φ0NM=0
135 134 adantr φx=10NM=0
136 133 135 eqtrd φx=11xNM=0
137 136 oveq2d φx=1xM1xNM=xM0
138 ax-1cn 1
139 eleq1 x=1x1
140 138 139 mpbiri x=1x
141 11 mul01d φxxM0=0
142 140 141 sylan2 φx=1xM0=0
143 137 142 eqtrd φx=1xM1xNM=0
144 27 28 58 59 66 76 82 92 109 113 116 128 143 itgparts φ01xMNM1xN-M-1dx=0-0-01MxM11xNMdx
145 56 144 eqtr3d φ01xMNM1xN-M-1dx=0-0-01MxM11xNMdx
146 27 28 103 itgioo φ01MxM11xNMdx=01MxM11xNMdx
147 146 oveq2d φ0-0-01MxM11xNMdx=0-0-01MxM11xNMdx
148 145 147 eqtrd φ01xMNM1xN-M-1dx=0-0-01MxM11xNMdx
149 0m0e0 00=0
150 149 oveq1i 0-0-01MxM11xNMdx=001MxM11xNMdx
151 148 150 eqtrdi φ01xMNM1xN-M-1dx=001MxM11xNMdx
152 49 151 eqtr3d φ01NMxM1xN-M-1dx=001MxM11xNMdx
153 42 152 eqtrd φNM01xM1xN-M-1dx=001MxM11xNMdx
154 44 96 101 mulassd φxMxM11xNM=MxM11xNM
155 7 154 sylan2 φx01MxM11xNM=MxM11xNM
156 155 itgeq2dv φ01MxM11xNMdx=01MxM11xNMdx
157 156 oveq2d φ001MxM11xNMdx=001MxM11xNMdx
158 153 157 eqtrd φNM01xM1xN-M-1dx=001MxM11xNMdx
159 97 102 mulcld φx01xM11xNM
160 74 65 mulcncf φxxM11xNM:cn
161 160 resclunitintvd φx01xM11xNM:01cn
162 cnicciblnc 01x01xM11xNM:01cnx01xM11xNM𝐿1
163 27 28 161 162 syl3anc φx01xM11xNM𝐿1
164 5 159 163 itgmulc2 φM01xM11xNMdx=01MxM11xNMdx
165 164 oveq2d φ0M01xM11xNMdx=001MxM11xNMdx
166 158 165 eqtr4d φNM01xM1xN-M-1dx=0M01xM11xNMdx
167 df-neg M01xM11xNMdx=0M01xM11xNMdx
168 166 167 eqtr4di φNM01xM1xN-M-1dx=M01xM11xNMdx
169 40 168 eqtr3d φNM01xM1xN-M-1dx=M01xM11xNMdx
170 6 39 mulcld φNM01xM1xN-M-1dx
171 159 163 itgcl φ01xM11xNMdx
172 5 171 mulcld φM01xM11xNMdx
173 170 172 neg11ad φNM01xM1xN-M-1dx=M01xM11xNMdxNM01xM1xN-M-1dx=M01xM11xNMdx
174 169 173 mpbid φNM01xM1xN-M-1dx=M01xM11xNMdx
175 20 nnne0d φNM0
176 172 6 39 175 divmuld φM01xM11xNMdxNM=01xM1xN-M-1dxNM01xM1xN-M-1dx=M01xM11xNMdx
177 174 176 mpbird φM01xM11xNMdxNM=01xM1xN-M-1dx
178 138 a1i φ1
179 5 178 pncand φM+1-1=M
180 179 eqcomd φM=M+1-1
181 180 oveq2d φxM=xM+1-1
182 4 5 178 subsub4d φN-M-1=NM+1
183 182 oveq2d φ1xN-M-1=1xNM+1
184 181 183 oveq12d φxM1xN-M-1=xM+1-11xNM+1
185 184 adantr φx01xM1xN-M-1=xM+1-11xNM+1
186 185 itgeq2dv φ01xM1xN-M-1dx=01xM+1-11xNM+1dx
187 177 186 eqtrd φM01xM11xNMdxNM=01xM+1-11xNM+1dx
188 187 eqcomd φ01xM+1-11xNM+1dx=M01xM11xNMdxNM
189 5 171 6 175 div23d φM01xM11xNMdxNM=MNM01xM11xNMdx
190 188 189 eqtrd φ01xM+1-11xNM+1dx=MNM01xM11xNMdx