Metamath Proof Explorer


Theorem lhe4.4ex1a

Description: Example of the Fundamental Theorem of Calculus, part two ( ftc2 ): S. ( 1 (,) 2 ) ( ( x ^ 2 ) - 3 ) _d x = -u ( 2 / 3 ) . Section 4.4 example 1a of LarsonHostetlerEdwards p. 311. (The book teaches ftc2 as simply the "Fundamental Theorem of Calculus", then ftc1 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015) (Revised by Steve Rodriguez, 31-Oct-2015)

Ref Expression
Assertion lhe4.4ex1a 12x23dx=23

Proof

Step Hyp Ref Expression
1 1red 1
2 2re 2
3 2 a1i 2
4 1le2 12
5 4 a1i 12
6 reelprrecn
7 6 a1i
8 recn yy
9 3nn0 30
10 expcl y30y3
11 9 10 mpan2 yy3
12 8 11 syl yy3
13 3cn 3
14 3ne0 30
15 divcl y3330y33
16 13 14 15 mp3an23 y3y33
17 12 16 syl yy33
18 mulcl 3y3y
19 13 8 18 sylancr y3y
20 17 19 subcld yy333y
21 20 adantl yy333y
22 ovexd yy23V
23 17 adantl yy33
24 ovexd yy2V
25 divrec2 y3330y33=13y3
26 13 14 25 mp3an23 y3y33=13y3
27 12 26 syl yy33=13y3
28 27 mpteq2ia yy33=y13y3
29 28 oveq2i dyy33dy=dy13y3dy
30 12 adantl yy3
31 ovexd y3y2V
32 eqid yy3=yy3
33 32 11 fmpti yy3:
34 ssid
35 ax-resscn
36 ovex 3y2V
37 3nn 3
38 dvexp 3dyy3dy=y3y31
39 37 38 ax-mp dyy3dy=y3y31
40 3m1e2 31=2
41 40 oveq2i y31=y2
42 41 oveq2i 3y31=3y2
43 42 mpteq2i y3y31=y3y2
44 39 43 eqtri dyy3dy=y3y2
45 36 44 dmmpti domdyy3dy=
46 35 45 sseqtrri domdyy3dy
47 dvres3 yy3:domdyy3dyDyy3=dyy3dy
48 6 33 34 46 47 mp4an Dyy3=dyy3dy
49 resmpt yy3=yy3
50 35 49 ax-mp yy3=yy3
51 50 oveq2i Dyy3=dyy3dy
52 44 reseq1i dyy3dy=y3y2
53 resmpt y3y2=y3y2
54 35 53 ax-mp y3y2=y3y2
55 52 54 eqtri dyy3dy=y3y2
56 48 51 55 3eqtr3i dyy3dy=y3y2
57 56 a1i dyy3dy=y3y2
58 ax-1cn 1
59 58 13 14 divcli 13
60 59 a1i 13
61 7 30 31 57 60 dvmptcmul dy13y3dy=y133y2
62 61 mptru dy13y3dy=y133y2
63 sqcl yy2
64 mulcl 3y23y2
65 13 63 64 sylancr y3y2
66 divrec2 3y23303y23=133y2
67 13 14 66 mp3an23 3y23y23=133y2
68 8 65 67 3syl y3y23=133y2
69 divcan3 y23303y23=y2
70 13 14 69 mp3an23 y23y23=y2
71 8 63 70 3syl y3y23=y2
72 68 71 eqtr3d y133y2=y2
73 72 mpteq2ia y133y2=yy2
74 29 62 73 3eqtri dyy33dy=yy2
75 74 a1i dyy33dy=yy2
76 19 adantl y3y
77 3ex 3V
78 77 a1i y3V
79 8 adantl yy
80 1red y1
81 7 dvmptid dyydy=y1
82 13 a1i 3
83 7 79 80 81 82 dvmptcmul dy3ydy=y31
84 3t1e3 31=3
85 84 mpteq2i y31=y3
86 83 85 eqtrdi dy3ydy=y3
87 7 23 24 75 76 78 86 dvmptsub dyy333ydy=yy23
88 1re 1
89 iccssre 1212
90 88 2 89 mp2an 12
91 90 a1i 12
92 eqid TopOpenfld=TopOpenfld
93 92 tgioo2 topGenran.=TopOpenfld𝑡
94 iccntr 12inttopGenran.12=12
95 88 2 94 mp2an inttopGenran.12=12
96 95 a1i inttopGenran.12=12
97 7 21 22 87 91 93 92 96 dvmptres2 dy12y333ydy=y12y23
98 ioossicc 1212
99 resmpt 1212y12y2312=y12y23
100 98 99 ax-mp y12y2312=y12y23
101 90 35 sstri 12
102 resmpt 12yy2312=y12y23
103 101 102 ax-mp yy2312=y12y23
104 eqid yy23=yy23
105 subcl y23y23
106 13 105 mpan2 y2y23
107 63 106 syl yy23
108 104 107 fmpti yy23:
109 34 108 34 3pm3.2i yy23:
110 ovex 2y210V
111 cnelprrecn
112 111 a1i
113 63 adantl yy2
114 ovexd y2y21V
115 2nn 2
116 dvexp 2dyy2dy=y2y21
117 115 116 ax-mp dyy2dy=y2y21
118 117 a1i dyy2dy=y2y21
119 13 a1i y3
120 c0ex 0V
121 120 a1i y0V
122 112 82 dvmptc dy3dy=y0
123 112 113 114 118 119 121 122 dvmptsub dyy23dy=y2y210
124 123 mptru dyy23dy=y2y210
125 110 124 dmmpti domdyy23dy=
126 dvcn yy23:domdyy23dy=yy23:cn
127 109 125 126 mp2an yy23:cn
128 rescncf 12yy23:cnyy2312:12cn
129 101 127 128 mp2 yy2312:12cn
130 103 129 eqeltrri y12y23:12cn
131 rescncf 1212y12y23:12cny12y2312:12cn
132 98 130 131 mp2 y12y2312:12cn
133 100 132 eqeltrri y12y23:12cn
134 97 133 eqeltrdi dy12y333ydy:12cn
135 98 a1i 1212
136 ioombl 12domvol
137 136 a1i 12domvol
138 ovexd y12y23V
139 cniccibl 12y12y23:12cny12y23𝐿1
140 88 2 130 139 mp3an y12y23𝐿1
141 140 a1i y12y23𝐿1
142 135 137 138 141 iblss y12y23𝐿1
143 97 142 eqeltrd dy12y333ydy𝐿1
144 resmpt 12yy333y12=y12y333y
145 90 144 ax-mp yy333y12=y12y333y
146 eqid yy333y=yy333y
147 146 20 fmpti yy333y:
148 ssid
149 35 147 148 3pm3.2i yy333y:
150 ovex y23V
151 87 mptru dyy333ydy=yy23
152 150 151 dmmpti domdyy333ydy=
153 dvcn yy333y:domdyy333ydy=yy333y:cn
154 149 152 153 mp2an yy333y:cn
155 rescncf 12yy333y:cnyy333y12:12cn
156 90 154 155 mp2 yy333y12:12cn
157 145 156 eqeltrri y12y333y:12cn
158 157 a1i y12y333y:12cn
159 1 3 5 134 143 158 ftc2 12dy12y333ydyxdx=y12y333y2y12y333y1
160 159 mptru 12dy12y333ydyxdx=y12y333y2y12y333y1
161 itgeq2 x12dy12y333ydyx=x2312dy12y333ydyxdx=12x23dx
162 oveq1 y=xy2=x2
163 162 oveq1d y=xy23=x23
164 97 mptru dy12y333ydy=y12y23
165 ovex x23V
166 163 164 165 fvmpt x12dy12y333ydyx=x23
167 161 166 mprg 12dy12y333ydyxdx=12x23dx
168 2 leidi 22
169 88 2 elicc2i 21221222
170 2 4 168 169 mpbir3an 212
171 oveq1 y=2y3=23
172 171 oveq1d y=2y33=233
173 oveq2 y=23y=32
174 172 173 oveq12d y=2y333y=23332
175 cu2 23=8
176 175 oveq1i 233=83
177 3t2e6 32=6
178 176 177 oveq12i 23332=836
179 2cn 2
180 6cn 6
181 179 180 13 14 divdiri 2+63=23+63
182 6p2e8 6+2=8
183 180 179 182 addcomli 2+6=8
184 183 oveq1i 2+63=83
185 180 13 179 14 divmuli 63=232=6
186 177 185 mpbir 63=2
187 186 oveq2i 23+63=23+2
188 181 184 187 3eqtr3i 83=23+2
189 188 oveq1i 836=23+2-6
190 179 13 14 divcli 23
191 subsub3 23622362=23+2-6
192 190 180 179 191 mp3an 2362=23+2-6
193 189 192 eqtr4i 836=2362
194 4cn 4
195 4p2e6 4+2=6
196 194 179 195 addcomli 2+4=6
197 180 179 194 196 subaddrii 62=4
198 197 oveq2i 2362=234
199 178 193 198 3eqtri 23332=234
200 174 199 eqtrdi y=2y333y=234
201 eqid y12y333y=y12y333y
202 ovex 234V
203 200 201 202 fvmpt 212y12y333y2=234
204 170 203 ax-mp y12y333y2=234
205 88 leidi 11
206 88 2 elicc2i 11211112
207 88 205 4 206 mpbir3an 112
208 oveq1 y=1y3=13
209 208 oveq1d y=1y33=133
210 oveq2 y=13y=31
211 209 210 oveq12d y=1y333y=13331
212 3z 3
213 1exp 313=1
214 212 213 ax-mp 13=1
215 214 oveq1i 133=13
216 215 84 oveq12i 13331=133
217 211 216 eqtrdi y=1y333y=133
218 ovex 133V
219 217 201 218 fvmpt 112y12y333y1=133
220 207 219 ax-mp y12y333y1=133
221 204 220 oveq12i y12y333y2y12y333y1=23-4-133
222 sub4 23413323-4-133=23-13-43
223 190 194 59 13 222 mp4an 23-4-133=23-13-43
224 13 14 pm3.2i 330
225 divsubdir 21330213=2313
226 179 58 224 225 mp3an 213=2313
227 2m1e1 21=1
228 227 oveq1i 213=13
229 226 228 eqtr3i 2313=13
230 3p1e4 3+1=4
231 194 13 58 230 subaddrii 43=1
232 229 231 oveq12i 23-13-43=131
233 221 223 232 3eqtri y12y333y2y12y333y1=131
234 13 14 dividi 33=1
235 234 oveq2i 1333=131
236 233 235 eqtr4i y12y333y2y12y333y1=1333
237 divsubdir 13330133=1333
238 58 13 224 237 mp3an 133=1333
239 236 238 eqtr4i y12y333y2y12y333y1=133
240 divneg 233023=23
241 179 13 14 240 mp3an 23=23
242 13 58 negsubdi2i 31=13
243 40 negeqi 31=2
244 242 243 eqtr3i 13=2
245 244 oveq1i 133=23
246 241 245 eqtr4i 23=133
247 239 246 eqtr4i y12y333y2y12y333y1=23
248 160 167 247 3eqtr3i 12x23dx=23