Metamath Proof Explorer


Theorem linds2eq

Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023)

Ref Expression
Hypotheses linds2eq.1 F=BaseScalarW
linds2eq.2 ·˙=W
linds2eq.3 +˙=+W
linds2eq.4 0˙=0ScalarW
linds2eq.5 φWLVec
linds2eq.6 φBLIndSW
linds2eq.7 φXB
linds2eq.8 φYB
linds2eq.9 φKF
linds2eq.10 φLF
linds2eq.11 φK0˙
linds2eq.12 φK·˙X=L·˙Y
Assertion linds2eq φX=YK=L

Proof

Step Hyp Ref Expression
1 linds2eq.1 F=BaseScalarW
2 linds2eq.2 ·˙=W
3 linds2eq.3 +˙=+W
4 linds2eq.4 0˙=0ScalarW
5 linds2eq.5 φWLVec
6 linds2eq.6 φBLIndSW
7 linds2eq.7 φXB
8 linds2eq.8 φYB
9 linds2eq.9 φKF
10 linds2eq.10 φLF
11 linds2eq.11 φK0˙
12 linds2eq.12 φK·˙X=L·˙Y
13 simpr φX=YX=Y
14 12 adantr φX=YK·˙X=L·˙Y
15 13 oveq2d φX=YL·˙X=L·˙Y
16 14 15 eqtr4d φX=YK·˙X=L·˙X
17 eqid BaseW=BaseW
18 eqid ScalarW=ScalarW
19 eqid 0W=0W
20 5 adantr φX=YWLVec
21 9 adantr φX=YKF
22 10 adantr φX=YLF
23 17 linds1 BLIndSWBBaseW
24 6 23 syl φBBaseW
25 24 7 sseldd φXBaseW
26 25 adantr φX=YXBaseW
27 19 0nellinds WLVecBLIndSW¬0WB
28 5 6 27 syl2anc φ¬0WB
29 nelne2 XB¬0WBX0W
30 7 28 29 syl2anc φX0W
31 30 adantr φX=YX0W
32 17 2 18 1 19 20 21 22 26 31 lvecvscan2 φX=YK·˙X=L·˙XK=L
33 16 32 mpbid φX=YK=L
34 13 33 jca φX=YX=YK=L
35 7 adantr φXYXB
36 9 adantr φXYKF
37 opex XKV
38 37 a1i φXYXKV
39 opex YinvgScalarWLV
40 39 a1i φXYYinvgScalarWLV
41 animorrl φXYXYKinvgScalarWL
42 opthneg XBKFXKYinvgScalarWLXYKinvgScalarWL
43 42 biimpar XBKFXYKinvgScalarWLXKYinvgScalarWL
44 35 36 41 43 syl21anc φXYXKYinvgScalarWL
45 animorrl φXYXYK0˙
46 opthneg XBKFXKY0˙XYK0˙
47 46 biimpar XBKFXYK0˙XKY0˙
48 35 36 45 47 syl21anc φXYXKY0˙
49 44 48 jca φXYXKYinvgScalarWLXKY0˙
50 8 adantr φXYYB
51 fvexd φXYinvgScalarWLV
52 simpr φXYXY
53 fprg XBYBKFinvgScalarWLVXYXKYinvgScalarWL:XYKinvgScalarWL
54 35 50 36 51 52 53 syl221anc φXYXKYinvgScalarWL:XYKinvgScalarWL
55 prfi XYFin
56 55 a1i φXYXYFin
57 4 fvexi 0˙V
58 57 a1i φXY0˙V
59 54 56 58 fdmfifsupp φXYfinSupp0˙XKYinvgScalarWL
60 lveclmod WLVecWLMod
61 5 60 syl φWLMod
62 lmodcmn WLModWCMnd
63 61 62 syl φWCMnd
64 63 adantr φXYWCMnd
65 61 adantr φXYWLMod
66 18 lmodring WLModScalarWRing
67 ringgrp ScalarWRingScalarWGrp
68 61 66 67 3syl φScalarWGrp
69 eqid invgScalarW=invgScalarW
70 1 69 grpinvcl ScalarWGrpLFinvgScalarWLF
71 68 10 70 syl2anc φinvgScalarWLF
72 9 71 prssd φKinvgScalarWLF
73 72 adantr φXYKinvgScalarWLF
74 54 73 fssd φXYXKYinvgScalarWL:XYF
75 eqidd φXYX=X
76 75 orcd φXYX=XX=Y
77 elprg XBXXYX=XX=Y
78 77 biimpar XBX=XX=YXXY
79 35 76 78 syl2anc φXYXXY
80 74 79 ffvelcdmd φXYXKYinvgScalarWLXF
81 25 adantr φXYXBaseW
82 17 18 2 1 lmodvscl WLModXKYinvgScalarWLXFXBaseWXKYinvgScalarWLX·˙XBaseW
83 65 80 81 82 syl3anc φXYXKYinvgScalarWLX·˙XBaseW
84 eqidd φXYY=Y
85 84 olcd φXYY=XY=Y
86 elprg YBYXYY=XY=Y
87 86 biimpar YBY=XY=YYXY
88 50 85 87 syl2anc φXYYXY
89 74 88 ffvelcdmd φXYXKYinvgScalarWLYF
90 24 8 sseldd φYBaseW
91 90 adantr φXYYBaseW
92 17 18 2 1 lmodvscl WLModXKYinvgScalarWLYFYBaseWXKYinvgScalarWLY·˙YBaseW
93 65 89 91 92 syl3anc φXYXKYinvgScalarWLY·˙YBaseW
94 fveq2 b=XXKYinvgScalarWLb=XKYinvgScalarWLX
95 id b=Xb=X
96 94 95 oveq12d b=XXKYinvgScalarWLb·˙b=XKYinvgScalarWLX·˙X
97 fveq2 b=YXKYinvgScalarWLb=XKYinvgScalarWLY
98 id b=Yb=Y
99 97 98 oveq12d b=YXKYinvgScalarWLb·˙b=XKYinvgScalarWLY·˙Y
100 17 3 96 99 gsumpr WCMndXBYBXYXKYinvgScalarWLX·˙XBaseWXKYinvgScalarWLY·˙YBaseWWbXYXKYinvgScalarWLb·˙b=XKYinvgScalarWLX·˙X+˙XKYinvgScalarWLY·˙Y
101 64 35 50 52 83 93 100 syl132anc φXYWbXYXKYinvgScalarWLb·˙b=XKYinvgScalarWLX·˙X+˙XKYinvgScalarWLY·˙Y
102 fvpr1g XBKFXYXKYinvgScalarWLX=K
103 35 36 52 102 syl3anc φXYXKYinvgScalarWLX=K
104 103 oveq1d φXYXKYinvgScalarWLX·˙X=K·˙X
105 71 adantr φXYinvgScalarWLF
106 fvpr2g YBinvgScalarWLFXYXKYinvgScalarWLY=invgScalarWL
107 50 105 52 106 syl3anc φXYXKYinvgScalarWLY=invgScalarWL
108 107 oveq1d φXYXKYinvgScalarWLY·˙Y=invgScalarWL·˙Y
109 104 108 oveq12d φXYXKYinvgScalarWLX·˙X+˙XKYinvgScalarWLY·˙Y=K·˙X+˙invgScalarWL·˙Y
110 17 18 2 1 lmodvscl WLModKFXBaseWK·˙XBaseW
111 61 9 25 110 syl3anc φK·˙XBaseW
112 12 111 eqeltrrd φL·˙YBaseW
113 eqid invgW=invgW
114 eqid -W=-W
115 17 3 113 114 grpsubval K·˙XBaseWL·˙YBaseWK·˙X-WL·˙Y=K·˙X+˙invgWL·˙Y
116 111 112 115 syl2anc φK·˙X-WL·˙Y=K·˙X+˙invgWL·˙Y
117 lmodgrp WLModWGrp
118 61 117 syl φWGrp
119 17 19 114 grpsubeq0 WGrpK·˙XBaseWL·˙YBaseWK·˙X-WL·˙Y=0WK·˙X=L·˙Y
120 118 111 112 119 syl3anc φK·˙X-WL·˙Y=0WK·˙X=L·˙Y
121 12 120 mpbird φK·˙X-WL·˙Y=0W
122 17 18 2 113 1 69 61 90 10 lmodvsneg φinvgWL·˙Y=invgScalarWL·˙Y
123 122 oveq2d φK·˙X+˙invgWL·˙Y=K·˙X+˙invgScalarWL·˙Y
124 116 121 123 3eqtr3rd φK·˙X+˙invgScalarWL·˙Y=0W
125 124 adantr φXYK·˙X+˙invgScalarWL·˙Y=0W
126 101 109 125 3eqtrd φXYWbXYXKYinvgScalarWLb·˙b=0W
127 breq1 a=XKYinvgScalarWLfinSupp0˙afinSupp0˙XKYinvgScalarWL
128 fveq1 a=XKYinvgScalarWLab=XKYinvgScalarWLb
129 128 oveq1d a=XKYinvgScalarWLab·˙b=XKYinvgScalarWLb·˙b
130 129 mpteq2dv a=XKYinvgScalarWLbXYab·˙b=bXYXKYinvgScalarWLb·˙b
131 130 oveq2d a=XKYinvgScalarWLWbXYab·˙b=WbXYXKYinvgScalarWLb·˙b
132 131 eqeq1d a=XKYinvgScalarWLWbXYab·˙b=0WWbXYXKYinvgScalarWLb·˙b=0W
133 127 132 anbi12d a=XKYinvgScalarWLfinSupp0˙aWbXYab·˙b=0WfinSupp0˙XKYinvgScalarWLWbXYXKYinvgScalarWLb·˙b=0W
134 eqeq1 a=XKYinvgScalarWLa=XY×0˙XKYinvgScalarWL=XY×0˙
135 133 134 imbi12d a=XKYinvgScalarWLfinSupp0˙aWbXYab·˙b=0Wa=XY×0˙finSupp0˙XKYinvgScalarWLWbXYXKYinvgScalarWLb·˙b=0WXKYinvgScalarWL=XY×0˙
136 7 8 prssd φXYB
137 136 24 sstrd φXYBaseW
138 lindsss WLModBLIndSWXYBXYLIndSW
139 61 6 136 138 syl3anc φXYLIndSW
140 17 1 18 2 19 4 islinds5 WLModXYBaseWXYLIndSWaFXYfinSupp0˙aWbXYab·˙b=0Wa=XY×0˙
141 140 biimpa WLModXYBaseWXYLIndSWaFXYfinSupp0˙aWbXYab·˙b=0Wa=XY×0˙
142 61 137 139 141 syl21anc φaFXYfinSupp0˙aWbXYab·˙b=0Wa=XY×0˙
143 142 adantr φXYaFXYfinSupp0˙aWbXYab·˙b=0Wa=XY×0˙
144 1 fvexi FV
145 144 a1i φXYFV
146 139 elexd φXYV
147 146 adantr φXYXYV
148 145 147 elmapd φXYXKYinvgScalarWLFXYXKYinvgScalarWL:XYF
149 74 148 mpbird φXYXKYinvgScalarWLFXY
150 135 143 149 rspcdva φXYfinSupp0˙XKYinvgScalarWLWbXYXKYinvgScalarWLb·˙b=0WXKYinvgScalarWL=XY×0˙
151 59 126 150 mp2and φXYXKYinvgScalarWL=XY×0˙
152 xpprsng XBYB0˙VXY×0˙=X0˙Y0˙
153 35 50 58 152 syl3anc φXYXY×0˙=X0˙Y0˙
154 151 153 eqtrd φXYXKYinvgScalarWL=X0˙Y0˙
155 opthprneg XKVYinvgScalarWLVXKYinvgScalarWLXKY0˙XKYinvgScalarWL=X0˙Y0˙XK=X0˙YinvgScalarWL=Y0˙
156 155 biimpa XKVYinvgScalarWLVXKYinvgScalarWLXKY0˙XKYinvgScalarWL=X0˙Y0˙XK=X0˙YinvgScalarWL=Y0˙
157 38 40 49 154 156 syl1111anc φXYXK=X0˙YinvgScalarWL=Y0˙
158 157 simpld φXYXK=X0˙
159 opthg XBKFXK=X0˙X=XK=0˙
160 159 simplbda XBKFXK=X0˙K=0˙
161 35 36 158 160 syl21anc φXYK=0˙
162 11 adantr φXYK0˙
163 161 162 pm2.21ddne φXYX=YK=L
164 34 163 pm2.61dane φX=YK=L