Metamath Proof Explorer


Theorem logdivbnd

Description: A bound on a sum of logs, used in pntlemk . This is not as precise as logdivsum in its asymptotic behavior, but it is valid for all N and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion logdivbnd Nn=1NlognnlogN+122

Proof

Step Hyp Ref Expression
1 2re 2
2 fzfid N1NFin
3 elfzuz n1Nn1
4 3 adantl Nn1Nn1
5 nnuz =1
6 4 5 eleqtrrdi Nn1Nn
7 6 nnrpd Nn1Nn+
8 7 relogcld Nn1Nlogn
9 8 6 nndivred Nn1Nlognn
10 2 9 fsumrecl Nn=1Nlognn
11 remulcl 2n=1Nlognn2n=1Nlognn
12 1 10 11 sylancr N2n=1Nlognn
13 elfznn i1Ni
14 13 adantl Ni1Ni
15 14 nnrecred Ni1N1i
16 2 15 fsumrecl Ni=1N1i
17 16 resqcld Ni=1N1i2
18 nnrp NN+
19 18 relogcld NlogN
20 peano2re logNlogN+1
21 19 20 syl NlogN+1
22 21 resqcld NlogN+12
23 10 recnd Nn=1Nlognn
24 23 2timesd N2n=1Nlognn=n=1Nlognn+n=1Nlognn
25 fzfid Nn1N1nFin
26 elfznn i1ni
27 26 adantl Nn1Ni1ni
28 27 nnrecred Nn1Ni1n1i
29 25 28 fsumrecl Nn1Ni=1n1i
30 29 6 nndivred Nn1Ni=1n1in
31 2 30 fsumrecl Nn=1Ni=1n1in
32 fzfid Nn1N1n1Fin
33 elfznn i1n1i
34 33 adantl Nn1Ni1n1i
35 34 nnrecred Nn1Ni1n11i
36 32 35 fsumrecl Nn1Ni=1n11i
37 36 6 nndivred Nn1Ni=1n11in
38 2 37 fsumrecl Nn=1Ni=1n11in
39 6 nncnd Nn1Nn
40 ax-1cn 1
41 npcan n1n-1+1=n
42 39 40 41 sylancl Nn1Nn-1+1=n
43 42 fveq2d Nn1Nlogn-1+1=logn
44 43 oveq2d Nn1Ni=1n11ilogn-1+1=i=1n11ilogn
45 nnm1nn0 nn10
46 harmonicbnd3 n10i=1n11ilogn-1+10γ
47 6 45 46 3syl Nn1Ni=1n11ilogn-1+10γ
48 44 47 eqeltrrd Nn1Ni=1n11ilogn0γ
49 0re 0
50 emre γ
51 49 50 elicc2i i=1n11ilogn0γi=1n11ilogn0i=1n11ilogni=1n11ilognγ
52 51 simp2bi i=1n11ilogn0γ0i=1n11ilogn
53 48 52 syl Nn1N0i=1n11ilogn
54 36 8 subge0d Nn1N0i=1n11ilognlogni=1n11i
55 53 54 mpbid Nn1Nlogni=1n11i
56 8 36 7 55 lediv1dd Nn1Nlognni=1n11in
57 27 nnrpd Nn1Ni1ni+
58 57 rpreccld Nn1Ni1n1i+
59 58 rpge0d Nn1Ni1n01i
60 elfzelz n1Nn
61 60 adantl Nn1Nn
62 peano2zm nn1
63 61 62 syl Nn1Nn1
64 6 nnred Nn1Nn
65 64 lem1d Nn1Nn1n
66 eluz2 nn1n1nn1n
67 63 61 65 66 syl3anbrc Nn1Nnn1
68 fzss2 nn11n11n
69 67 68 syl Nn1N1n11n
70 25 28 59 69 fsumless Nn1Ni=1n11ii=1n1i
71 6 nngt0d Nn1N0<n
72 lediv1 i=1n11ii=1n1in0<ni=1n11ii=1n1ii=1n11ini=1n1in
73 36 29 64 71 72 syl112anc Nn1Ni=1n11ii=1n1ii=1n11ini=1n1in
74 70 73 mpbid Nn1Ni=1n11ini=1n1in
75 9 37 30 56 74 letrd Nn1Nlognni=1n1in
76 2 9 30 75 fsumle Nn=1Nlognnn=1Ni=1n1in
77 2 9 37 56 fsumle Nn=1Nlognnn=1Ni=1n11in
78 10 10 31 38 76 77 le2addd Nn=1Nlognn+n=1Nlognnn=1Ni=1n1in+n=1Ni=1n11in
79 oveq1 m=nm1=n1
80 79 oveq2d m=n1m1=1n1
81 80 sumeq1d m=ni=1m11i=i=1n11i
82 81 81 jca m=ni=1m11i=i=1n11ii=1m11i=i=1n11i
83 oveq1 m=n+1m1=n+1-1
84 83 oveq2d m=n+11m1=1n+1-1
85 84 sumeq1d m=n+1i=1m11i=i=1n+1-11i
86 85 85 jca m=n+1i=1m11i=i=1n+1-11ii=1m11i=i=1n+1-11i
87 oveq1 m=1m1=11
88 1m1e0 11=0
89 87 88 eqtrdi m=1m1=0
90 89 oveq2d m=11m1=10
91 fz10 10=
92 90 91 eqtrdi m=11m1=
93 92 sumeq1d m=1i=1m11i=i1i
94 sum0 i1i=0
95 93 94 eqtrdi m=1i=1m11i=0
96 95 95 jca m=1i=1m11i=0i=1m11i=0
97 oveq1 m=N+1m1=N+1-1
98 97 oveq2d m=N+11m1=1N+1-1
99 98 sumeq1d m=N+1i=1m11i=i=1N+1-11i
100 99 99 jca m=N+1i=1m11i=i=1N+1-11ii=1m11i=i=1N+1-11i
101 peano2nn NN+1
102 101 5 eleqtrdi NN+11
103 fzfid Nm1N+11m1Fin
104 elfznn i1m1i
105 104 adantl Nm1N+1i1m1i
106 105 nnrecred Nm1N+1i1m11i
107 103 106 fsumrecl Nm1N+1i=1m11i
108 107 recnd Nm1N+1i=1m11i
109 82 86 96 100 102 108 108 fsumparts Nn1..^N+1i=1n11ii=1n+1-11ii=1n11i=i=1N+1-11ii=1N+1-11i-00-n1..^N+1i=1n+1-11ii=1n11ii=1n+1-11i
110 nnz NN
111 fzval3 N1N=1..^N+1
112 110 111 syl N1N=1..^N+1
113 112 eqcomd N1..^N+1=1N
114 36 recnd Nn1Ni=1n11i
115 6 nnrecred Nn1N1n
116 115 recnd Nn1N1n
117 pncan n1n+1-1=n
118 39 40 117 sylancl Nn1Nn+1-1=n
119 118 oveq2d Nn1N1n+1-1=1n
120 119 sumeq1d Nn1Ni=1n+1-11i=i=1n1i
121 28 recnd Nn1Ni1n1i
122 oveq2 i=n1i=1n
123 4 121 122 fsumm1 Nn1Ni=1n1i=i=1n11i+1n
124 120 123 eqtrd Nn1Ni=1n+1-11i=i=1n11i+1n
125 114 116 124 mvrladdd Nn1Ni=1n+1-11ii=1n11i=1n
126 125 oveq2d Nn1Ni=1n11ii=1n+1-11ii=1n11i=i=1n11i1n
127 6 nnne0d Nn1Nn0
128 114 39 127 divrecd Nn1Ni=1n11in=i=1n11i1n
129 126 128 eqtr4d Nn1Ni=1n11ii=1n+1-11ii=1n11i=i=1n11in
130 113 129 sumeq12rdv Nn1..^N+1i=1n11ii=1n+1-11ii=1n11i=n=1Ni=1n11in
131 nncn NN
132 pncan N1N+1-1=N
133 131 40 132 sylancl NN+1-1=N
134 133 oveq2d N1N+1-1=1N
135 134 sumeq1d Ni=1N+1-11i=i=1N1i
136 135 135 oveq12d Ni=1N+1-11ii=1N+1-11i=i=1N1ii=1N1i
137 16 recnd Ni=1N1i
138 137 sqvald Ni=1N1i2=i=1N1ii=1N1i
139 136 138 eqtr4d Ni=1N+1-11ii=1N+1-11i=i=1N1i2
140 0cn 0
141 140 mul01i 00=0
142 141 a1i N00=0
143 139 142 oveq12d Ni=1N+1-11ii=1N+1-11i00=i=1N1i20
144 137 sqcld Ni=1N1i2
145 144 subid1d Ni=1N1i20=i=1N1i2
146 143 145 eqtrd Ni=1N+1-11ii=1N+1-11i00=i=1N1i2
147 125 120 oveq12d Nn1Ni=1n+1-11ii=1n11ii=1n+1-11i=1ni=1n1i
148 29 recnd Nn1Ni=1n1i
149 148 39 127 divrec2d Nn1Ni=1n1in=1ni=1n1i
150 147 149 eqtr4d Nn1Ni=1n+1-11ii=1n11ii=1n+1-11i=i=1n1in
151 113 150 sumeq12rdv Nn1..^N+1i=1n+1-11ii=1n11ii=1n+1-11i=n=1Ni=1n1in
152 146 151 oveq12d Ni=1N+1-11ii=1N+1-11i-00-n1..^N+1i=1n+1-11ii=1n11ii=1n+1-11i=i=1N1i2n=1Ni=1n1in
153 109 130 152 3eqtr3rd Ni=1N1i2n=1Ni=1n1in=n=1Ni=1n11in
154 31 recnd Nn=1Ni=1n1in
155 38 recnd Nn=1Ni=1n11in
156 144 154 155 subaddd Ni=1N1i2n=1Ni=1n1in=n=1Ni=1n11inn=1Ni=1n1in+n=1Ni=1n11in=i=1N1i2
157 153 156 mpbid Nn=1Ni=1n1in+n=1Ni=1n11in=i=1N1i2
158 78 157 breqtrd Nn=1Nlognn+n=1Nlognni=1N1i2
159 24 158 eqbrtrd N2n=1Nlognni=1N1i2
160 flid NN=N
161 110 160 syl NN=N
162 161 oveq2d N1N=1N
163 162 sumeq1d Ni=1N1i=i=1N1i
164 nnre NN
165 nnge1 N1N
166 harmonicubnd N1Ni=1N1ilogN+1
167 164 165 166 syl2anc Ni=1N1ilogN+1
168 163 167 eqbrtrrd Ni=1N1ilogN+1
169 14 nnrpd Ni1Ni+
170 169 rpreccld Ni1N1i+
171 170 rpge0d Ni1N01i
172 2 15 171 fsumge0 N0i=1N1i
173 49 a1i N0
174 log1 log1=0
175 1rp 1+
176 logleb 1+N+1Nlog1logN
177 175 18 176 sylancr N1Nlog1logN
178 165 177 mpbid Nlog1logN
179 174 178 eqbrtrrid N0logN
180 19 lep1d NlogNlogN+1
181 173 19 21 179 180 letrd N0logN+1
182 16 21 172 181 le2sqd Ni=1N1ilogN+1i=1N1i2logN+12
183 168 182 mpbid Ni=1N1i2logN+12
184 12 17 22 159 183 letrd N2n=1NlognnlogN+12
185 1 a1i N2
186 2pos 0<2
187 186 a1i N0<2
188 lemuldiv2 n=1NlognnlogN+1220<22n=1NlognnlogN+12n=1NlognnlogN+122
189 10 22 185 187 188 syl112anc N2n=1NlognnlogN+12n=1NlognnlogN+122
190 184 189 mpbid Nn=1NlognnlogN+122