Metamath Proof Explorer


Theorem madjusmdetlem1

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B=BaseA
madjusmdet.a A=1NMatR
madjusmdet.d D=1NmaDetR
madjusmdet.k K=1NmaAdjuR
madjusmdet.t ·˙=R
madjusmdet.z Z=ℤRHomR
madjusmdet.e E=1N1maDetR
madjusmdet.n φN
madjusmdet.r φRCRing
madjusmdet.i φI1N
madjusmdet.j φJ1N
madjusmdet.m φMB
madjusmdetlem1.g G=BaseSymGrp1N
madjusmdetlem1.s S=pmSgn1N
madjusmdetlem1.u U=I1NminMatR1RMJ
madjusmdetlem1.w W=i1N,j1NPiUQj
madjusmdetlem1.p φPG
madjusmdetlem1.q φQG
madjusmdetlem1.1 φPN=I
madjusmdetlem1.2 φQN=J
madjusmdetlem1.3 φIsubMat1UJ=NsubMat1WN
Assertion madjusmdetlem1 φJKMI=ZSPSQ·˙EIsubMat1MJ

Proof

Step Hyp Ref Expression
1 madjusmdet.b B=BaseA
2 madjusmdet.a A=1NMatR
3 madjusmdet.d D=1NmaDetR
4 madjusmdet.k K=1NmaAdjuR
5 madjusmdet.t ·˙=R
6 madjusmdet.z Z=ℤRHomR
7 madjusmdet.e E=1N1maDetR
8 madjusmdet.n φN
9 madjusmdet.r φRCRing
10 madjusmdet.i φI1N
11 madjusmdet.j φJ1N
12 madjusmdet.m φMB
13 madjusmdetlem1.g G=BaseSymGrp1N
14 madjusmdetlem1.s S=pmSgn1N
15 madjusmdetlem1.u U=I1NminMatR1RMJ
16 madjusmdetlem1.w W=i1N,j1NPiUQj
17 madjusmdetlem1.p φPG
18 madjusmdetlem1.q φQG
19 madjusmdetlem1.1 φPN=I
20 madjusmdetlem1.2 φQN=J
21 madjusmdetlem1.3 φIsubMat1UJ=NsubMat1WN
22 2 1 3 4 maducoevalmin1 MBJ1NI1NJKMI=DI1NminMatR1RMJ
23 12 11 10 22 syl3anc φJKMI=DI1NminMatR1RMJ
24 15 fveq2i DU=DI1NminMatR1RMJ
25 23 24 eqtr4di φJKMI=DU
26 fzfid φ1NFin
27 crngring RCRingRRing
28 9 27 syl φRRing
29 2 1 minmar1cl RRingMBI1NJ1NI1NminMatR1RMJB
30 28 12 10 11 29 syl22anc φI1NminMatR1RMJB
31 15 30 eqeltrid φUB
32 2 1 3 13 14 6 5 16 9 26 31 17 18 mdetpmtr12 φDU=ZSPSQ·˙DW
33 simplr φi1Nj1Ni=Nj=Ni=N
34 33 fveq2d φi1Nj1Ni=Nj=NPi=PN
35 19 3ad2ant1 φi1Nj1NPN=I
36 35 ad2antrr φi1Nj1Ni=Nj=NPN=I
37 34 36 eqtrd φi1Nj1Ni=Nj=NPi=I
38 simpr φi1Nj1Ni=Nj=Nj=N
39 38 fveq2d φi1Nj1Ni=Nj=NQj=QN
40 20 3ad2ant1 φi1Nj1NQN=J
41 40 ad2antrr φi1Nj1Ni=Nj=NQN=J
42 39 41 eqtrd φi1Nj1Ni=Nj=NQj=J
43 37 42 oveq12d φi1Nj1Ni=Nj=NPiI1NminMatR1RMJQj=II1NminMatR1RMJJ
44 12 3ad2ant1 φi1Nj1NMB
45 44 ad2antrr φi1Nj1Ni=Nj=NMB
46 10 3ad2ant1 φi1Nj1NI1N
47 46 ad2antrr φi1Nj1Ni=Nj=NI1N
48 11 3ad2ant1 φi1Nj1NJ1N
49 48 ad2antrr φi1Nj1Ni=Nj=NJ1N
50 eqid 1NminMatR1R=1NminMatR1R
51 eqid 1R=1R
52 eqid 0R=0R
53 2 1 50 51 52 minmar1eval MBI1NJ1NI1NJ1NII1NminMatR1RMJJ=ifI=IifJ=J1R0RIMJ
54 45 47 49 47 49 53 syl122anc φi1Nj1Ni=Nj=NII1NminMatR1RMJJ=ifI=IifJ=J1R0RIMJ
55 eqid I=I
56 55 iftruei ifI=IifJ=J1R0RIMJ=ifJ=J1R0R
57 eqid J=J
58 57 iftruei ifJ=J1R0R=1R
59 56 58 eqtri ifI=IifJ=J1R0RIMJ=1R
60 59 a1i φi1Nj1Ni=Nj=NifI=IifJ=J1R0RIMJ=1R
61 43 54 60 3eqtrrd φi1Nj1Ni=Nj=N1R=PiI1NminMatR1RMJQj
62 simplr φi1Nj1Ni=N¬j=Ni=N
63 62 fveq2d φi1Nj1Ni=N¬j=NPi=PN
64 35 ad2antrr φi1Nj1Ni=N¬j=NPN=I
65 63 64 eqtrd φi1Nj1Ni=N¬j=NPi=I
66 65 oveq1d φi1Nj1Ni=N¬j=NPiI1NminMatR1RMJQj=II1NminMatR1RMJQj
67 44 ad2antrr φi1Nj1Ni=N¬j=NMB
68 46 ad2antrr φi1Nj1Ni=N¬j=NI1N
69 48 ad2antrr φi1Nj1Ni=N¬j=NJ1N
70 18 3ad2ant1 φi1Nj1NQG
71 simp3 φi1Nj1Nj1N
72 eqid SymGrp1N=SymGrp1N
73 72 13 symgfv QGj1NQj1N
74 70 71 73 syl2anc φi1Nj1NQj1N
75 74 ad2antrr φi1Nj1Ni=N¬j=NQj1N
76 2 1 50 51 52 minmar1eval MBI1NJ1NI1NQj1NII1NminMatR1RMJQj=ifI=IifQj=J1R0RIMQj
77 67 68 69 68 75 76 syl122anc φi1Nj1Ni=N¬j=NII1NminMatR1RMJQj=ifI=IifQj=J1R0RIMQj
78 55 a1i φi1Nj1Ni=N¬j=NI=I
79 78 iftrued φi1Nj1Ni=N¬j=NifI=IifQj=J1R0RIMQj=ifQj=J1R0R
80 simpr φi1Nj1Ni=NQj=JQj=J
81 80 fveq2d φi1Nj1Ni=NQj=JQ-1Qj=Q-1J
82 72 13 symgbasf1o QGQ:1N1-1 onto1N
83 70 82 syl φi1Nj1NQ:1N1-1 onto1N
84 83 ad2antrr φi1Nj1Ni=NQj=JQ:1N1-1 onto1N
85 71 ad2antrr φi1Nj1Ni=NQj=Jj1N
86 f1ocnvfv1 Q:1N1-1 onto1Nj1NQ-1Qj=j
87 84 85 86 syl2anc φi1Nj1Ni=NQj=JQ-1Qj=j
88 20 fveq2d φQ-1QN=Q-1J
89 18 82 syl φQ:1N1-1 onto1N
90 nnuz =1
91 8 90 eleqtrdi φN1
92 eluzfz2 N1N1N
93 91 92 syl φN1N
94 f1ocnvfv1 Q:1N1-1 onto1NN1NQ-1QN=N
95 89 93 94 syl2anc φQ-1QN=N
96 88 95 eqtr3d φQ-1J=N
97 96 3ad2ant1 φi1Nj1NQ-1J=N
98 97 ad2antrr φi1Nj1Ni=NQj=JQ-1J=N
99 81 87 98 3eqtr3d φi1Nj1Ni=NQj=Jj=N
100 99 ex φi1Nj1Ni=NQj=Jj=N
101 100 con3d φi1Nj1Ni=N¬j=N¬Qj=J
102 101 imp φi1Nj1Ni=N¬j=N¬Qj=J
103 102 iffalsed φi1Nj1Ni=N¬j=NifQj=J1R0R=0R
104 79 103 eqtrd φi1Nj1Ni=N¬j=NifI=IifQj=J1R0RIMQj=0R
105 66 77 104 3eqtrrd φi1Nj1Ni=N¬j=N0R=PiI1NminMatR1RMJQj
106 61 105 ifeqda φi1Nj1Ni=Nifj=N1R0R=PiI1NminMatR1RMJQj
107 simp2 φi1Nj1Ni1N
108 107 adantr φi1Nj1N¬i=Ni1N
109 71 adantr φi1Nj1N¬i=Nj1N
110 ovexd φi1Nj1N¬i=NPiI1NminMatR1RMJQjV
111 15 oveqi PiUQj=PiI1NminMatR1RMJQj
112 111 a1i i1Nj1NPiUQj=PiI1NminMatR1RMJQj
113 112 mpoeq3ia i1N,j1NPiUQj=i1N,j1NPiI1NminMatR1RMJQj
114 16 113 eqtri W=i1N,j1NPiI1NminMatR1RMJQj
115 114 ovmpt4g i1Nj1NPiI1NminMatR1RMJQjViWj=PiI1NminMatR1RMJQj
116 108 109 110 115 syl3anc φi1Nj1N¬i=NiWj=PiI1NminMatR1RMJQj
117 106 116 ifeqda φi1Nj1Nifi=Nifj=N1R0RiWj=PiI1NminMatR1RMJQj
118 117 mpoeq3dva φi1N,j1Nifi=Nifj=N1R0RiWj=i1N,j1NPiI1NminMatR1RMJQj
119 eqid BaseR=BaseR
120 17 3ad2ant1 φi1Nj1NPG
121 72 13 symgfv PGi1NPi1N
122 120 107 121 syl2anc φi1Nj1NPi1N
123 31 3ad2ant1 φi1Nj1NUB
124 2 119 1 122 74 123 matecld φi1Nj1NPiUQjBaseR
125 2 119 1 26 9 124 matbas2d φi1N,j1NPiUQjB
126 16 125 eqeltrid φWB
127 119 51 ringidcl RRing1RBaseR
128 28 127 syl φ1RBaseR
129 eqid 1NmatRRepR=1NmatRRepR
130 2 1 129 52 marrepval WB1RBaseRN1NN1NNW1NmatRRepR1RN=i1N,j1Nifi=Nifj=N1R0RiWj
131 126 128 93 93 130 syl22anc φNW1NmatRRepR1RN=i1N,j1Nifi=Nifj=N1R0RiWj
132 114 a1i φW=i1N,j1NPiI1NminMatR1RMJQj
133 118 131 132 3eqtr4d φNW1NmatRRepR1RN=W
134 133 fveq2d φDNW1NmatRRepR1RN=DW
135 eqid 1NsubMatR=1NsubMatR
136 2 135 1 submaval WBN1NN1NN1NsubMatRWN=i1NN,j1NNiWj
137 126 93 93 136 syl3anc φN1NsubMatRWN=i1NN,j1NNiWj
138 fzdif2 N11NN=1N1
139 91 138 syl φ1NN=1N1
140 mpoeq12 1NN=1N11NN=1N1i1NN,j1NNiWj=i1N1,j1N1iWj
141 139 139 140 syl2anc φi1NN,j1NNiWj=i1N1,j1N1iWj
142 137 141 eqtrd φN1NsubMatRWN=i1N1,j1N1iWj
143 difssd φ1NN1N
144 139 143 eqsstrrd φ1N11N
145 2 1 submabas WB1N11Ni1N1,j1N1iWjBase1N1MatR
146 126 144 145 syl2anc φi1N1,j1N1iWjBase1N1MatR
147 142 146 eqeltrd φN1NsubMatRWNBase1N1MatR
148 eqid 1N1MatR=1N1MatR
149 eqid Base1N1MatR=Base1N1MatR
150 7 148 149 119 mdetcl RCRingN1NsubMatRWNBase1N1MatREN1NsubMatRWNBaseR
151 9 147 150 syl2anc φEN1NsubMatRWNBaseR
152 119 5 51 ringlidm RRingEN1NsubMatRWNBaseR1R·˙EN1NsubMatRWN=EN1NsubMatRWN
153 28 151 152 syl2anc φ1R·˙EN1NsubMatRWN=EN1NsubMatRWN
154 2 fveq2i BaseA=Base1NMatR
155 1 154 eqtri B=Base1NMatR
156 126 155 eleqtrdi φWBase1NMatR
157 smadiadetr RCRingWBase1NMatRN1N1RBaseR1NmaDetRNW1NmatRRepR1RN=1RR1NNmaDetRN1NsubMatRWN
158 9 156 93 128 157 syl22anc φ1NmaDetRNW1NmatRRepR1RN=1RR1NNmaDetRN1NsubMatRWN
159 3 fveq1i DNW1NmatRRepR1RN=1NmaDetRNW1NmatRRepR1RN
160 5 oveqi 1R·˙1NNmaDetRN1NsubMatRWN=1RR1NNmaDetRN1NsubMatRWN
161 159 160 eqeq12i DNW1NmatRRepR1RN=1R·˙1NNmaDetRN1NsubMatRWN1NmaDetRNW1NmatRRepR1RN=1RR1NNmaDetRN1NsubMatRWN
162 158 161 sylibr φDNW1NmatRRepR1RN=1R·˙1NNmaDetRN1NsubMatRWN
163 139 oveq1d φ1NNmaDetR=1N1maDetR
164 163 7 eqtr4di φ1NNmaDetR=E
165 164 fveq1d φ1NNmaDetRN1NsubMatRWN=EN1NsubMatRWN
166 165 oveq2d φ1R·˙1NNmaDetRN1NsubMatRWN=1R·˙EN1NsubMatRWN
167 162 166 eqtrd φDNW1NmatRRepR1RN=1R·˙EN1NsubMatRWN
168 2 1 submat1n NWBNsubMat1WN=N1NsubMatRWN
169 8 126 168 syl2anc φNsubMat1WN=N1NsubMatRWN
170 169 fveq2d φENsubMat1WN=EN1NsubMatRWN
171 153 167 170 3eqtr4d φDNW1NmatRRepR1RN=ENsubMat1WN
172 134 171 eqtr3d φDW=ENsubMat1WN
173 2 1 8 10 11 28 12 15 submatminr1 φIsubMat1MJ=IsubMat1UJ
174 173 21 eqtrd φIsubMat1MJ=NsubMat1WN
175 174 fveq2d φEIsubMat1MJ=ENsubMat1WN
176 172 175 eqtr4d φDW=EIsubMat1MJ
177 176 oveq2d φZSPSQ·˙DW=ZSPSQ·˙EIsubMat1MJ
178 25 32 177 3eqtrd φJKMI=ZSPSQ·˙EIsubMat1MJ