Metamath Proof Explorer


Theorem mbfinf

Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypotheses mbfinf.1 Z=M
mbfinf.2 G=xAsuprannZB<
mbfinf.3 φM
mbfinf.4 φnZxABMblFn
mbfinf.5 φnZxAB
mbfinf.6 φxAynZyB
Assertion mbfinf φGMblFn

Proof

Step Hyp Ref Expression
1 mbfinf.1 Z=M
2 mbfinf.2 G=xAsuprannZB<
3 mbfinf.3 φM
4 mbfinf.4 φnZxABMblFn
5 mbfinf.5 φnZxAB
6 mbfinf.6 φxAynZyB
7 5 anass1rs φxAnZB
8 7 fmpttd φxAnZB:Z
9 8 frnd φxArannZB
10 uzid MMM
11 3 10 syl φMM
12 11 1 eleqtrrdi φMZ
13 12 adantr φxAMZ
14 eqid nZB=nZB
15 14 7 dmmptd φxAdomnZB=Z
16 13 15 eleqtrrd φxAMdomnZB
17 16 ne0d φxAdomnZB
18 dm0rn0 domnZB=rannZB=
19 18 necon3bii domnZBrannZB
20 17 19 sylib φxArannZB
21 8 ffnd φxAnZBFnZ
22 breq2 z=nZBmyzynZBm
23 22 ralrn nZBFnZzrannZByzmZynZBm
24 21 23 syl φxAzrannZByzmZynZBm
25 nfcv _ny
26 nfcv _n
27 nffvmpt1 _nnZBm
28 25 26 27 nfbr nynZBm
29 nfv mynZBn
30 fveq2 m=nnZBm=nZBn
31 30 breq2d m=nynZBmynZBn
32 28 29 31 cbvralw mZynZBmnZynZBn
33 simpr φxAnZnZ
34 14 fvmpt2 nZBnZBn=B
35 33 7 34 syl2anc φxAnZnZBn=B
36 35 breq2d φxAnZynZBnyB
37 36 ralbidva φxAnZynZBnnZyB
38 32 37 bitrid φxAmZynZBmnZyB
39 24 38 bitrd φxAzrannZByznZyB
40 39 rexbidv φxAyzrannZByzynZyB
41 6 40 mpbird φxAyzrannZByz
42 infrenegsup rannZBrannZByzrannZByzsuprannZB<=supr|rrannZB<
43 9 20 41 42 syl3anc φxAsuprannZB<=supr|rrannZB<
44 rabid rr|rrannZBrrrannZB
45 7 recnd φxAnZB
46 45 adantlr φxArnZB
47 simplr φxArnZr
48 47 recnd φxArnZr
49 negcon2 BrB=rr=B
50 46 48 49 syl2anc φxArnZB=rr=B
51 eqcom r=BB=r
52 50 51 bitrdi φxArnZB=rB=r
53 35 adantlr φxArnZnZBn=B
54 53 eqeq1d φxArnZnZBn=rB=r
55 negex BV
56 eqid nZB=nZB
57 56 fvmpt2 nZBVnZBn=B
58 55 57 mpan2 nZnZBn=B
59 58 adantl φxArnZnZBn=B
60 59 eqeq1d φxArnZnZBn=rB=r
61 52 54 60 3bitr4d φxArnZnZBn=rnZBn=r
62 61 ralrimiva φxArnZnZBn=rnZBn=r
63 27 nfeq1 nnZBm=r
64 nffvmpt1 _nnZBm
65 64 nfeq1 nnZBm=r
66 63 65 nfbi nnZBm=rnZBm=r
67 nfv mnZBn=rnZBn=r
68 fveqeq2 m=nnZBm=rnZBn=r
69 fveqeq2 m=nnZBm=rnZBn=r
70 68 69 bibi12d m=nnZBm=rnZBm=rnZBn=rnZBn=r
71 66 67 70 cbvralw mZnZBm=rnZBm=rnZnZBn=rnZBn=r
72 62 71 sylibr φxArmZnZBm=rnZBm=r
73 72 r19.21bi φxArmZnZBm=rnZBm=r
74 73 rexbidva φxArmZnZBm=rmZnZBm=r
75 21 adantr φxArnZBFnZ
76 fvelrnb nZBFnZrrannZBmZnZBm=r
77 75 76 syl φxArrrannZBmZnZBm=r
78 7 renegcld φxAnZB
79 78 fmpttd φxAnZB:Z
80 79 adantr φxArnZB:Z
81 80 ffnd φxArnZBFnZ
82 fvelrnb nZBFnZrrannZBmZnZBm=r
83 81 82 syl φxArrrannZBmZnZBm=r
84 74 77 83 3bitr4d φxArrrannZBrrannZB
85 84 pm5.32da φxArrrannZBrrrannZB
86 79 frnd φxArannZB
87 86 sseld φxArrannZBr
88 87 pm4.71rd φxArrannZBrrrannZB
89 85 88 bitr4d φxArrrannZBrrannZB
90 44 89 bitrid φxArr|rrannZBrrannZB
91 90 alrimiv φxArrr|rrannZBrrannZB
92 nfrab1 _rr|rrannZB
93 nfcv _rrannZB
94 92 93 cleqf r|rrannZB=rannZBrrr|rrannZBrrannZB
95 91 94 sylibr φxAr|rrannZB=rannZB
96 95 supeq1d φxAsupr|rrannZB<=suprannZB<
97 96 negeqd φxAsupr|rrannZB<=suprannZB<
98 43 97 eqtrd φxAsuprannZB<=suprannZB<
99 98 mpteq2dva φxAsuprannZB<=xAsuprannZB<
100 2 99 eqtrid φG=xAsuprannZB<
101 ltso <Or
102 101 supex suprannZB<V
103 102 a1i φxAsuprannZB<V
104 eqid xAsuprannZB<=xAsuprannZB<
105 5 anassrs φnZxAB
106 105 4 mbfneg φnZxABMblFn
107 5 renegcld φnZxAB
108 renegcl yy
109 108 ad2antrl φxAynZyBy
110 simplr φxAynZy
111 7 adantlr φxAynZB
112 110 111 lenegd φxAynZyBBy
113 112 ralbidva φxAynZyBnZBy
114 113 biimpd φxAynZyBnZBy
115 114 impr φxAynZyBnZBy
116 brralrspcev ynZByznZBz
117 109 115 116 syl2anc φxAynZyBznZBz
118 6 117 rexlimddv φxAznZBz
119 1 104 3 106 107 118 mbfsup φxAsuprannZB<MblFn
120 103 119 mbfneg φxAsuprannZB<MblFn
121 100 120 eqeltrd φGMblFn