Step |
Hyp |
Ref |
Expression |
1 |
|
mbfinf.1 |
|
2 |
|
mbfinf.2 |
|
3 |
|
mbfinf.3 |
|
4 |
|
mbfinf.4 |
|
5 |
|
mbfinf.5 |
|
6 |
|
mbfinf.6 |
|
7 |
5
|
anass1rs |
|
8 |
7
|
fmpttd |
|
9 |
8
|
frnd |
|
10 |
|
uzid |
|
11 |
3 10
|
syl |
|
12 |
11 1
|
eleqtrrdi |
|
13 |
12
|
adantr |
|
14 |
|
eqid |
|
15 |
14 7
|
dmmptd |
|
16 |
13 15
|
eleqtrrd |
|
17 |
16
|
ne0d |
|
18 |
|
dm0rn0 |
|
19 |
18
|
necon3bii |
|
20 |
17 19
|
sylib |
|
21 |
8
|
ffnd |
|
22 |
|
breq2 |
|
23 |
22
|
ralrn |
|
24 |
21 23
|
syl |
|
25 |
|
nfcv |
|
26 |
|
nfcv |
|
27 |
|
nffvmpt1 |
|
28 |
25 26 27
|
nfbr |
|
29 |
|
nfv |
|
30 |
|
fveq2 |
|
31 |
30
|
breq2d |
|
32 |
28 29 31
|
cbvralw |
|
33 |
|
simpr |
|
34 |
14
|
fvmpt2 |
|
35 |
33 7 34
|
syl2anc |
|
36 |
35
|
breq2d |
|
37 |
36
|
ralbidva |
|
38 |
32 37
|
syl5bb |
|
39 |
24 38
|
bitrd |
|
40 |
39
|
rexbidv |
|
41 |
6 40
|
mpbird |
|
42 |
|
infrenegsup |
|
43 |
9 20 41 42
|
syl3anc |
|
44 |
|
rabid |
|
45 |
7
|
recnd |
|
46 |
45
|
adantlr |
|
47 |
|
simplr |
|
48 |
47
|
recnd |
|
49 |
|
negcon2 |
|
50 |
46 48 49
|
syl2anc |
|
51 |
|
eqcom |
|
52 |
50 51
|
bitrdi |
|
53 |
35
|
adantlr |
|
54 |
53
|
eqeq1d |
|
55 |
|
negex |
|
56 |
|
eqid |
|
57 |
56
|
fvmpt2 |
|
58 |
55 57
|
mpan2 |
|
59 |
58
|
adantl |
|
60 |
59
|
eqeq1d |
|
61 |
52 54 60
|
3bitr4d |
|
62 |
61
|
ralrimiva |
|
63 |
27
|
nfeq1 |
|
64 |
|
nffvmpt1 |
|
65 |
64
|
nfeq1 |
|
66 |
63 65
|
nfbi |
|
67 |
|
nfv |
|
68 |
|
fveqeq2 |
|
69 |
|
fveqeq2 |
|
70 |
68 69
|
bibi12d |
|
71 |
66 67 70
|
cbvralw |
|
72 |
62 71
|
sylibr |
|
73 |
72
|
r19.21bi |
|
74 |
73
|
rexbidva |
|
75 |
21
|
adantr |
|
76 |
|
fvelrnb |
|
77 |
75 76
|
syl |
|
78 |
7
|
renegcld |
|
79 |
78
|
fmpttd |
|
80 |
79
|
adantr |
|
81 |
80
|
ffnd |
|
82 |
|
fvelrnb |
|
83 |
81 82
|
syl |
|
84 |
74 77 83
|
3bitr4d |
|
85 |
84
|
pm5.32da |
|
86 |
79
|
frnd |
|
87 |
86
|
sseld |
|
88 |
87
|
pm4.71rd |
|
89 |
85 88
|
bitr4d |
|
90 |
44 89
|
syl5bb |
|
91 |
90
|
alrimiv |
|
92 |
|
nfrab1 |
|
93 |
|
nfcv |
|
94 |
92 93
|
cleqf |
|
95 |
91 94
|
sylibr |
|
96 |
95
|
supeq1d |
|
97 |
96
|
negeqd |
|
98 |
43 97
|
eqtrd |
|
99 |
98
|
mpteq2dva |
|
100 |
2 99
|
eqtrid |
|
101 |
|
ltso |
|
102 |
101
|
supex |
|
103 |
102
|
a1i |
|
104 |
|
eqid |
|
105 |
5
|
anassrs |
|
106 |
105 4
|
mbfneg |
|
107 |
5
|
renegcld |
|
108 |
|
renegcl |
|
109 |
108
|
ad2antrl |
|
110 |
|
simplr |
|
111 |
7
|
adantlr |
|
112 |
110 111
|
lenegd |
|
113 |
112
|
ralbidva |
|
114 |
113
|
biimpd |
|
115 |
114
|
impr |
|
116 |
|
brralrspcev |
|
117 |
109 115 116
|
syl2anc |
|
118 |
6 117
|
rexlimddv |
|
119 |
1 104 3 106 107 118
|
mbfsup |
|
120 |
103 119
|
mbfneg |
|
121 |
100 120
|
eqeltrd |
|