Metamath Proof Explorer


Theorem mdetuni0

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A=NMatR
mdetuni.b B=BaseA
mdetuni.k K=BaseR
mdetuni.0g 0˙=0R
mdetuni.1r 1˙=1R
mdetuni.pg +˙=+R
mdetuni.tg ·˙=R
mdetuni.n φNFin
mdetuni.r φRRing
mdetuni.ff φD:BK
mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
mdetuni.e E=NmaDetR
mdetuni.cr φRCRing
mdetuni.f φFB
Assertion mdetuni0 φDF=D1A·˙EF

Proof

Step Hyp Ref Expression
1 mdetuni.a A=NMatR
2 mdetuni.b B=BaseA
3 mdetuni.k K=BaseR
4 mdetuni.0g 0˙=0R
5 mdetuni.1r 1˙=1R
6 mdetuni.pg +˙=+R
7 mdetuni.tg ·˙=R
8 mdetuni.n φNFin
9 mdetuni.r φRRing
10 mdetuni.ff φD:BK
11 mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
12 mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
13 mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
14 mdetuni.e E=NmaDetR
15 mdetuni.cr φRCRing
16 mdetuni.f φFB
17 ringgrp RRingRGrp
18 9 17 syl φRGrp
19 18 adantr φaBRGrp
20 10 ffvelcdmda φaBDaK
21 9 adantr φaBRRing
22 8 9 jca φNFinRRing
23 1 matring NFinRRingARing
24 eqid 1A=1A
25 2 24 ringidcl ARing1AB
26 22 23 25 3syl φ1AB
27 10 26 ffvelcdmd φD1AK
28 27 adantr φaBD1AK
29 14 1 2 3 mdetf RCRingE:BK
30 15 29 syl φE:BK
31 30 ffvelcdmda φaBEaK
32 3 7 ringcl RRingD1AKEaKD1A·˙EaK
33 21 28 31 32 syl3anc φaBD1A·˙EaK
34 eqid -R=-R
35 3 34 grpsubcl RGrpDaKD1A·˙EaKDa-RD1A·˙EaK
36 19 20 33 35 syl3anc φaBDa-RD1A·˙EaK
37 36 fmpttd φaBDa-RD1A·˙Ea:BK
38 simpr1 φbBcNdNbB
39 fveq2 a=bDa=Db
40 fveq2 a=bEa=Eb
41 40 oveq2d a=bD1A·˙Ea=D1A·˙Eb
42 39 41 oveq12d a=bDa-RD1A·˙Ea=Db-RD1A·˙Eb
43 eqid aBDa-RD1A·˙Ea=aBDa-RD1A·˙Ea
44 ovex Db-RD1A·˙EbV
45 42 43 44 fvmpt bBaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
46 38 45 syl φbBcNdNaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
47 46 3adant3 φbBcNdNcdeNcbe=dbeaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
48 simp1 φbBcNdNcdeNcbe=dbeφ
49 simp21 φbBcNdNcdeNcbe=dbebB
50 simp3r φbBcNdNcdeNcbe=dbeeNcbe=dbe
51 oveq2 e=wcbe=cbw
52 oveq2 e=wdbe=dbw
53 51 52 eqeq12d e=wcbe=dbecbw=dbw
54 53 cbvralvw eNcbe=dbewNcbw=dbw
55 50 54 sylib φbBcNdNcdeNcbe=dbewNcbw=dbw
56 simp22 φbBcNdNcdeNcbe=dbecN
57 simp23 φbBcNdNcdeNcbe=dbedN
58 simp3l φbBcNdNcdeNcbe=dbecd
59 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem1 φbBwNcbw=dbwcNdNcdDb=0˙
60 48 49 55 56 57 58 59 syl33anc φbBcNdNcdeNcbe=dbeDb=0˙
61 15 3ad2ant1 φbBcNdNcdeNcbe=dbeRCRing
62 14 1 2 4 61 49 56 57 58 50 mdetralt φbBcNdNcdeNcbe=dbeEb=0˙
63 62 oveq2d φbBcNdNcdeNcbe=dbeD1A·˙Eb=D1A·˙0˙
64 60 63 oveq12d φbBcNdNcdeNcbe=dbeDb-RD1A·˙Eb=0˙-RD1A·˙0˙
65 3 7 4 ringrz RRingD1AKD1A·˙0˙=0˙
66 9 27 65 syl2anc φD1A·˙0˙=0˙
67 66 oveq2d φ0˙-RD1A·˙0˙=0˙-R0˙
68 3 4 grpidcl RGrp0˙K
69 3 4 34 grpsubid RGrp0˙K0˙-R0˙=0˙
70 18 68 69 syl2anc2 φ0˙-R0˙=0˙
71 67 70 eqtrd φ0˙-RD1A·˙0˙=0˙
72 71 3ad2ant1 φbBcNdNcdeNcbe=dbe0˙-RD1A·˙0˙=0˙
73 47 64 72 3eqtrd φbBcNdNcdeNcbe=dbeaBDa-RD1A·˙Eab=0˙
74 73 3expia φbBcNdNcdeNcbe=dbeaBDa-RD1A·˙Eab=0˙
75 74 ralrimivvva φbBcNdNcdeNcbe=dbeaBDa-RD1A·˙Eab=0˙
76 simp1 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×Nφ
77 simp2ll φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NbB
78 simp2lr φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NcB
79 simp2rl φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NdB
80 simp2rr φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NeN
81 simp31 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×Nbe×N=ce×N+˙fde×N
82 simp32 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NbNe×N=cNe×N
83 simp33 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NbNe×N=dNe×N
84 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem3 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NDb=Dc+˙Dd
85 76 77 78 79 80 81 82 83 84 syl332anc φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NDb=Dc+˙Dd
86 15 3ad2ant1 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NRCRing
87 14 1 2 6 86 77 78 79 80 81 82 83 mdetrlin φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NEb=Ec+˙Ed
88 87 oveq2d φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×ND1A·˙Eb=D1A·˙Ec+˙Ed
89 85 88 oveq12d φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NDb-RD1A·˙Eb=Dc+˙Dd-RD1A·˙Ec+˙Ed
90 simprll φbBcBdBeNbB
91 90 45 syl φbBcBdBeNaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
92 91 3adant3 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
93 simprlr φbBcBdBeNcB
94 fveq2 a=cDa=Dc
95 fveq2 a=cEa=Ec
96 95 oveq2d a=cD1A·˙Ea=D1A·˙Ec
97 94 96 oveq12d a=cDa-RD1A·˙Ea=Dc-RD1A·˙Ec
98 ovex Dc-RD1A·˙EcV
99 97 43 98 fvmpt cBaBDa-RD1A·˙Eac=Dc-RD1A·˙Ec
100 93 99 syl φbBcBdBeNaBDa-RD1A·˙Eac=Dc-RD1A·˙Ec
101 simprrl φbBcBdBeNdB
102 fveq2 a=dDa=Dd
103 fveq2 a=dEa=Ed
104 103 oveq2d a=dD1A·˙Ea=D1A·˙Ed
105 102 104 oveq12d a=dDa-RD1A·˙Ea=Dd-RD1A·˙Ed
106 ovex Dd-RD1A·˙EdV
107 105 43 106 fvmpt dBaBDa-RD1A·˙Ead=Dd-RD1A·˙Ed
108 101 107 syl φbBcBdBeNaBDa-RD1A·˙Ead=Dd-RD1A·˙Ed
109 100 108 oveq12d φbBcBdBeNaBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead=Dc-RD1A·˙Ec+˙Dd-RD1A·˙Ed
110 ringabl RRingRAbel
111 9 110 syl φRAbel
112 111 adantr φbBcBdBeNRAbel
113 10 adantr φbBcBdBeND:BK
114 113 93 ffvelcdmd φbBcBdBeNDcK
115 113 101 ffvelcdmd φbBcBdBeNDdK
116 9 adantr φbBcBdBeNRRing
117 27 adantr φbBcBdBeND1AK
118 30 adantr φbBcBdBeNE:BK
119 118 93 ffvelcdmd φbBcBdBeNEcK
120 3 7 ringcl RRingD1AKEcKD1A·˙EcK
121 116 117 119 120 syl3anc φbBcBdBeND1A·˙EcK
122 118 101 ffvelcdmd φbBcBdBeNEdK
123 3 7 ringcl RRingD1AKEdKD1A·˙EdK
124 116 117 122 123 syl3anc φbBcBdBeND1A·˙EdK
125 3 6 34 ablsub4 RAbelDcKDdKD1A·˙EcKD1A·˙EdKDc+˙Dd-RD1A·˙Ec+˙D1A·˙Ed=Dc-RD1A·˙Ec+˙Dd-RD1A·˙Ed
126 112 114 115 121 124 125 syl122anc φbBcBdBeNDc+˙Dd-RD1A·˙Ec+˙D1A·˙Ed=Dc-RD1A·˙Ec+˙Dd-RD1A·˙Ed
127 3 6 7 ringdi RRingD1AKEcKEdKD1A·˙Ec+˙Ed=D1A·˙Ec+˙D1A·˙Ed
128 116 117 119 122 127 syl13anc φbBcBdBeND1A·˙Ec+˙Ed=D1A·˙Ec+˙D1A·˙Ed
129 128 eqcomd φbBcBdBeND1A·˙Ec+˙D1A·˙Ed=D1A·˙Ec+˙Ed
130 129 oveq2d φbBcBdBeNDc+˙Dd-RD1A·˙Ec+˙D1A·˙Ed=Dc+˙Dd-RD1A·˙Ec+˙Ed
131 109 126 130 3eqtr2d φbBcBdBeNaBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead=Dc+˙Dd-RD1A·˙Ec+˙Ed
132 131 3adant3 φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead=Dc+˙Dd-RD1A·˙Ec+˙Ed
133 89 92 132 3eqtr4d φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eab=aBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead
134 133 3expia φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eab=aBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead
135 134 anassrs φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eab=aBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead
136 135 ralrimivva φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eab=aBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead
137 136 ralrimivva φbBcBdBeNbe×N=ce×N+˙fde×NbNe×N=cNe×NbNe×N=dNe×NaBDa-RD1A·˙Eab=aBDa-RD1A·˙Eac+˙aBDa-RD1A·˙Ead
138 simp1 φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×Nφ
139 simp2ll φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NbB
140 simp2lr φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NcK
141 simp2rl φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NdB
142 simp2rr φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NeN
143 simp3l φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×Nbe×N=e×N×c·˙fde×N
144 simp3r φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NbNe×N=dNe×N
145 1 2 3 4 5 6 7 8 9 10 11 12 13 mdetunilem4 φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NDb=c·˙Dd
146 138 139 140 141 142 143 144 145 syl133anc φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NDb=c·˙Dd
147 15 3ad2ant1 φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NRCRing
148 14 1 2 3 7 147 139 140 141 142 143 144 mdetrsca φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NEb=c·˙Ed
149 148 oveq2d φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×ND1A·˙Eb=D1A·˙c·˙Ed
150 146 149 oveq12d φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NDb-RD1A·˙Eb=c·˙Dd-RD1A·˙c·˙Ed
151 simprll φbBcKdBeNbB
152 151 45 syl φbBcKdBeNaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
153 152 3adant3 φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NaBDa-RD1A·˙Eab=Db-RD1A·˙Eb
154 simprrl φbBcKdBeNdB
155 154 107 syl φbBcKdBeNaBDa-RD1A·˙Ead=Dd-RD1A·˙Ed
156 155 oveq2d φbBcKdBeNc·˙aBDa-RD1A·˙Ead=c·˙Dd-RD1A·˙Ed
157 9 adantr φbBcKdBeNRRing
158 simprlr φbBcKdBeNcK
159 10 adantr φbBcKdBeND:BK
160 159 154 ffvelcdmd φbBcKdBeNDdK
161 27 adantr φbBcKdBeND1AK
162 30 adantr φbBcKdBeNE:BK
163 162 154 ffvelcdmd φbBcKdBeNEdK
164 157 161 163 123 syl3anc φbBcKdBeND1A·˙EdK
165 3 7 34 157 158 160 164 ringsubdi φbBcKdBeNc·˙Dd-RD1A·˙Ed=c·˙Dd-Rc·˙D1A·˙Ed
166 eqid mulGrpR=mulGrpR
167 166 crngmgp RCRingmulGrpRCMnd
168 15 167 syl φmulGrpRCMnd
169 168 adantr φbBcKdBeNmulGrpRCMnd
170 166 3 mgpbas K=BasemulGrpR
171 166 7 mgpplusg ·˙=+mulGrpR
172 170 171 cmn12 mulGrpRCMndcKD1AKEdKc·˙D1A·˙Ed=D1A·˙c·˙Ed
173 169 158 161 163 172 syl13anc φbBcKdBeNc·˙D1A·˙Ed=D1A·˙c·˙Ed
174 173 oveq2d φbBcKdBeNc·˙Dd-Rc·˙D1A·˙Ed=c·˙Dd-RD1A·˙c·˙Ed
175 156 165 174 3eqtrd φbBcKdBeNc·˙aBDa-RD1A·˙Ead=c·˙Dd-RD1A·˙c·˙Ed
176 175 3adant3 φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×Nc·˙aBDa-RD1A·˙Ead=c·˙Dd-RD1A·˙c·˙Ed
177 150 153 176 3eqtr4d φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NaBDa-RD1A·˙Eab=c·˙aBDa-RD1A·˙Ead
178 177 3expia φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NaBDa-RD1A·˙Eab=c·˙aBDa-RD1A·˙Ead
179 178 anassrs φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NaBDa-RD1A·˙Eab=c·˙aBDa-RD1A·˙Ead
180 179 ralrimivva φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NaBDa-RD1A·˙Eab=c·˙aBDa-RD1A·˙Ead
181 180 ralrimivva φbBcKdBeNbe×N=e×N×c·˙fde×NbNe×N=dNe×NaBDa-RD1A·˙Eab=c·˙aBDa-RD1A·˙Ead
182 eqidd φaBDa-RD1A·˙Ea=aBDa-RD1A·˙Ea
183 fveq2 a=1ADa=D1A
184 fveq2 a=1AEa=E1A
185 184 oveq2d a=1AD1A·˙Ea=D1A·˙E1A
186 183 185 oveq12d a=1ADa-RD1A·˙Ea=D1A-RD1A·˙E1A
187 14 1 24 5 mdet1 RCRingNFinE1A=1˙
188 15 8 187 syl2anc φE1A=1˙
189 188 oveq2d φD1A·˙E1A=D1A·˙1˙
190 3 7 5 ringridm RRingD1AKD1A·˙1˙=D1A
191 9 27 190 syl2anc φD1A·˙1˙=D1A
192 189 191 eqtrd φD1A·˙E1A=D1A
193 192 oveq2d φD1A-RD1A·˙E1A=D1A-RD1A
194 3 4 34 grpsubid RGrpD1AKD1A-RD1A=0˙
195 18 27 194 syl2anc φD1A-RD1A=0˙
196 193 195 eqtrd φD1A-RD1A·˙E1A=0˙
197 186 196 sylan9eqr φa=1ADa-RD1A·˙Ea=0˙
198 4 fvexi 0˙V
199 198 a1i φ0˙V
200 182 197 26 199 fvmptd φaBDa-RD1A·˙Ea1A=0˙
201 eqid b|cBdNNebce=ifed1˙0˙aBDa-RD1A·˙Eac=0˙=b|cBdNNebce=ifed1˙0˙aBDa-RD1A·˙Eac=0˙
202 1 2 3 4 5 6 7 8 9 37 75 137 181 200 201 mdetunilem9 φaBDa-RD1A·˙Ea=B×0˙
203 202 fveq1d φaBDa-RD1A·˙EaF=B×0˙F
204 fveq2 a=FDa=DF
205 fveq2 a=FEa=EF
206 205 oveq2d a=FD1A·˙Ea=D1A·˙EF
207 204 206 oveq12d a=FDa-RD1A·˙Ea=DF-RD1A·˙EF
208 207 adantl φa=FDa-RD1A·˙Ea=DF-RD1A·˙EF
209 ovexd φDF-RD1A·˙EFV
210 182 208 16 209 fvmptd φaBDa-RD1A·˙EaF=DF-RD1A·˙EF
211 198 fvconst2 FBB×0˙F=0˙
212 16 211 syl φB×0˙F=0˙
213 203 210 212 3eqtr3d φDF-RD1A·˙EF=0˙
214 10 16 ffvelcdmd φDFK
215 30 16 ffvelcdmd φEFK
216 3 7 ringcl RRingD1AKEFKD1A·˙EFK
217 9 27 215 216 syl3anc φD1A·˙EFK
218 3 4 34 grpsubeq0 RGrpDFKD1A·˙EFKDF-RD1A·˙EF=0˙DF=D1A·˙EF
219 18 214 217 218 syl3anc φDF-RD1A·˙EF=0˙DF=D1A·˙EF
220 213 219 mpbid φDF=D1A·˙EF