Metamath Proof Explorer


Theorem mettrifi

Description: Generalized triangle inequality for arbitrary finite sums. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Hypotheses mettrifi.2 φDMetX
mettrifi.3 φNM
mettrifi.4 φkMNFkX
Assertion mettrifi φFMDFNk=MN1FkDFk+1

Proof

Step Hyp Ref Expression
1 mettrifi.2 φDMetX
2 mettrifi.3 φNM
3 mettrifi.4 φkMNFkX
4 eluzfz2 NMNMN
5 2 4 syl φNMN
6 eleq1 x=MxMNMMN
7 fveq2 x=MFx=FM
8 7 oveq2d x=MFMDFx=FMDFM
9 oveq1 x=Mx1=M1
10 9 oveq2d x=MMx1=MM1
11 10 sumeq1d x=Mk=Mx1FkDFk+1=k=MM1FkDFk+1
12 8 11 breq12d x=MFMDFxk=Mx1FkDFk+1FMDFMk=MM1FkDFk+1
13 6 12 imbi12d x=MxMNFMDFxk=Mx1FkDFk+1MMNFMDFMk=MM1FkDFk+1
14 13 imbi2d x=MφxMNFMDFxk=Mx1FkDFk+1φMMNFMDFMk=MM1FkDFk+1
15 eleq1 x=nxMNnMN
16 fveq2 x=nFx=Fn
17 16 oveq2d x=nFMDFx=FMDFn
18 oveq1 x=nx1=n1
19 18 oveq2d x=nMx1=Mn1
20 19 sumeq1d x=nk=Mx1FkDFk+1=k=Mn1FkDFk+1
21 17 20 breq12d x=nFMDFxk=Mx1FkDFk+1FMDFnk=Mn1FkDFk+1
22 15 21 imbi12d x=nxMNFMDFxk=Mx1FkDFk+1nMNFMDFnk=Mn1FkDFk+1
23 22 imbi2d x=nφxMNFMDFxk=Mx1FkDFk+1φnMNFMDFnk=Mn1FkDFk+1
24 eleq1 x=n+1xMNn+1MN
25 fveq2 x=n+1Fx=Fn+1
26 25 oveq2d x=n+1FMDFx=FMDFn+1
27 oveq1 x=n+1x1=n+1-1
28 27 oveq2d x=n+1Mx1=Mn+1-1
29 28 sumeq1d x=n+1k=Mx1FkDFk+1=k=Mn+1-1FkDFk+1
30 26 29 breq12d x=n+1FMDFxk=Mx1FkDFk+1FMDFn+1k=Mn+1-1FkDFk+1
31 24 30 imbi12d x=n+1xMNFMDFxk=Mx1FkDFk+1n+1MNFMDFn+1k=Mn+1-1FkDFk+1
32 31 imbi2d x=n+1φxMNFMDFxk=Mx1FkDFk+1φn+1MNFMDFn+1k=Mn+1-1FkDFk+1
33 eleq1 x=NxMNNMN
34 fveq2 x=NFx=FN
35 34 oveq2d x=NFMDFx=FMDFN
36 oveq1 x=Nx1=N1
37 36 oveq2d x=NMx1=MN1
38 37 sumeq1d x=Nk=Mx1FkDFk+1=k=MN1FkDFk+1
39 35 38 breq12d x=NFMDFxk=Mx1FkDFk+1FMDFNk=MN1FkDFk+1
40 33 39 imbi12d x=NxMNFMDFxk=Mx1FkDFk+1NMNFMDFNk=MN1FkDFk+1
41 40 imbi2d x=NφxMNFMDFxk=Mx1FkDFk+1φNMNFMDFNk=MN1FkDFk+1
42 0le0 00
43 42 a1i φ00
44 eluzfz1 NMMMN
45 2 44 syl φMMN
46 3 ralrimiva φkMNFkX
47 fveq2 k=MFk=FM
48 47 eleq1d k=MFkXFMX
49 48 rspcv MMNkMNFkXFMX
50 45 46 49 sylc φFMX
51 met0 DMetXFMXFMDFM=0
52 1 50 51 syl2anc φFMDFM=0
53 eluzel2 NMM
54 2 53 syl φM
55 54 zred φM
56 55 ltm1d φM1<M
57 peano2zm MM1
58 fzn MM1M1<MMM1=
59 54 57 58 syl2anc2 φM1<MMM1=
60 56 59 mpbid φMM1=
61 60 sumeq1d φk=MM1FkDFk+1=kFkDFk+1
62 sum0 kFkDFk+1=0
63 61 62 eqtrdi φk=MM1FkDFk+1=0
64 43 52 63 3brtr4d φFMDFMk=MM1FkDFk+1
65 64 a1d φMMNFMDFMk=MM1FkDFk+1
66 65 a1i MφMMNFMDFMk=MM1FkDFk+1
67 peano2fzr nMn+1MNnMN
68 67 ex nMn+1MNnMN
69 68 adantl φnMn+1MNnMN
70 69 imim1d φnMnMNFMDFnk=Mn1FkDFk+1n+1MNFMDFnk=Mn1FkDFk+1
71 1 3ad2ant1 φnMn+1MNDMetX
72 50 3ad2ant1 φnMn+1MNFMX
73 simp3 φnMn+1MNn+1MN
74 46 3ad2ant1 φnMn+1MNkMNFkX
75 fveq2 k=n+1Fk=Fn+1
76 75 eleq1d k=n+1FkXFn+1X
77 76 rspcv n+1MNkMNFkXFn+1X
78 73 74 77 sylc φnMn+1MNFn+1X
79 fveq2 k=nFk=Fn
80 79 eleq1d k=nFkXFnX
81 80 cbvralvw kMNFkXnMNFnX
82 74 81 sylib φnMn+1MNnMNFnX
83 69 3impia φnMn+1MNnMN
84 rsp nMNFnXnMNFnX
85 82 83 84 sylc φnMn+1MNFnX
86 mettri DMetXFMXFn+1XFnXFMDFn+1FMDFn+FnDFn+1
87 71 72 78 85 86 syl13anc φnMn+1MNFMDFn+1FMDFn+FnDFn+1
88 metcl DMetXFMXFn+1XFMDFn+1
89 71 72 78 88 syl3anc φnMn+1MNFMDFn+1
90 metcl DMetXFMXFnXFMDFn
91 71 72 85 90 syl3anc φnMn+1MNFMDFn
92 metcl DMetXFnXFn+1XFnDFn+1
93 71 85 78 92 syl3anc φnMn+1MNFnDFn+1
94 91 93 readdcld φnMn+1MNFMDFn+FnDFn+1
95 fzfid φnMn+1MNMnFin
96 71 adantr φnMn+1MNkMnDMetX
97 elfzuz3 nMNNn
98 83 97 syl φnMn+1MNNn
99 fzss2 NnMnMN
100 98 99 syl φnMn+1MNMnMN
101 100 sselda φnMn+1MNkMnkMN
102 3 3ad2antl1 φnMn+1MNkMNFkX
103 101 102 syldan φnMn+1MNkMnFkX
104 elfzuz kMnkM
105 104 adantl φnMn+1MNkMnkM
106 peano2uz kMk+1M
107 105 106 syl φnMn+1MNkMnk+1M
108 elfzuz3 n+1MNNn+1
109 73 108 syl φnMn+1MNNn+1
110 109 adantr φnMn+1MNkMnNn+1
111 elfzuz3 kMnnk
112 111 adantl φnMn+1MNkMnnk
113 eluzp1p1 nkn+1k+1
114 112 113 syl φnMn+1MNkMnn+1k+1
115 uztrn Nn+1n+1k+1Nk+1
116 110 114 115 syl2anc φnMn+1MNkMnNk+1
117 elfzuzb k+1MNk+1MNk+1
118 107 116 117 sylanbrc φnMn+1MNkMnk+1MN
119 fveq2 n=k+1Fn=Fk+1
120 119 eleq1d n=k+1FnXFk+1X
121 120 rspccva nMNFnXk+1MNFk+1X
122 82 121 sylan φnMn+1MNk+1MNFk+1X
123 118 122 syldan φnMn+1MNkMnFk+1X
124 metcl DMetXFkXFk+1XFkDFk+1
125 96 103 123 124 syl3anc φnMn+1MNkMnFkDFk+1
126 95 125 fsumrecl φnMn+1MNk=MnFkDFk+1
127 letr FMDFn+1FMDFn+FnDFn+1k=MnFkDFk+1FMDFn+1FMDFn+FnDFn+1FMDFn+FnDFn+1k=MnFkDFk+1FMDFn+1k=MnFkDFk+1
128 89 94 126 127 syl3anc φnMn+1MNFMDFn+1FMDFn+FnDFn+1FMDFn+FnDFn+1k=MnFkDFk+1FMDFn+1k=MnFkDFk+1
129 87 128 mpand φnMn+1MNFMDFn+FnDFn+1k=MnFkDFk+1FMDFn+1k=MnFkDFk+1
130 fzfid φnMn+1MNMn1Fin
131 fzssp1 Mn1Mn-1+1
132 eluzelz nMn
133 132 3ad2ant2 φnMn+1MNn
134 133 zcnd φnMn+1MNn
135 ax-1cn 1
136 npcan n1n-1+1=n
137 134 135 136 sylancl φnMn+1MNn-1+1=n
138 137 oveq2d φnMn+1MNMn-1+1=Mn
139 131 138 sseqtrid φnMn+1MNMn1Mn
140 139 sselda φnMn+1MNkMn1kMn
141 140 125 syldan φnMn+1MNkMn1FkDFk+1
142 130 141 fsumrecl φnMn+1MNk=Mn1FkDFk+1
143 91 142 93 leadd1d φnMn+1MNFMDFnk=Mn1FkDFk+1FMDFn+FnDFn+1k=Mn1FkDFk+1+FnDFn+1
144 simp2 φnMn+1MNnM
145 125 recnd φnMn+1MNkMnFkDFk+1
146 fvoveq1 k=nFk+1=Fn+1
147 79 146 oveq12d k=nFkDFk+1=FnDFn+1
148 144 145 147 fsumm1 φnMn+1MNk=MnFkDFk+1=k=Mn1FkDFk+1+FnDFn+1
149 148 breq2d φnMn+1MNFMDFn+FnDFn+1k=MnFkDFk+1FMDFn+FnDFn+1k=Mn1FkDFk+1+FnDFn+1
150 143 149 bitr4d φnMn+1MNFMDFnk=Mn1FkDFk+1FMDFn+FnDFn+1k=MnFkDFk+1
151 pncan n1n+1-1=n
152 134 135 151 sylancl φnMn+1MNn+1-1=n
153 152 oveq2d φnMn+1MNMn+1-1=Mn
154 153 sumeq1d φnMn+1MNk=Mn+1-1FkDFk+1=k=MnFkDFk+1
155 154 breq2d φnMn+1MNFMDFn+1k=Mn+1-1FkDFk+1FMDFn+1k=MnFkDFk+1
156 129 150 155 3imtr4d φnMn+1MNFMDFnk=Mn1FkDFk+1FMDFn+1k=Mn+1-1FkDFk+1
157 156 3expia φnMn+1MNFMDFnk=Mn1FkDFk+1FMDFn+1k=Mn+1-1FkDFk+1
158 157 a2d φnMn+1MNFMDFnk=Mn1FkDFk+1n+1MNFMDFn+1k=Mn+1-1FkDFk+1
159 70 158 syld φnMnMNFMDFnk=Mn1FkDFk+1n+1MNFMDFn+1k=Mn+1-1FkDFk+1
160 159 expcom nMφnMNFMDFnk=Mn1FkDFk+1n+1MNFMDFn+1k=Mn+1-1FkDFk+1
161 160 a2d nMφnMNFMDFnk=Mn1FkDFk+1φn+1MNFMDFn+1k=Mn+1-1FkDFk+1
162 14 23 32 41 66 161 uzind4 NMφNMNFMDFNk=MN1FkDFk+1
163 2 162 mpcom φNMNFMDFNk=MN1FkDFk+1
164 5 163 mpd φFMDFNk=MN1FkDFk+1