Metamath Proof Explorer


Theorem nna4b4nsq

Description: Strengthening of Fermat's last theorem for exponent 4, where the sum is only assumed to be a square. (Contributed by SN, 23-Aug-2024)

Ref Expression
Hypotheses nna4b4nsq.a φA
nna4b4nsq.b φB
nna4b4nsq.c φC
Assertion nna4b4nsq φA4+B4C2

Proof

Step Hyp Ref Expression
1 nna4b4nsq.a φA
2 nna4b4nsq.b φB
3 nna4b4nsq.c φC
4 oveq1 a=Aa4=A4
5 4 oveq1d a=Aa4+b4=A4+b4
6 5 eqeq1d a=Aa4+b4=c2A4+b4=c2
7 oveq1 b=Bb4=B4
8 7 oveq2d b=BA4+b4=A4+B4
9 8 eqeq1d b=BA4+b4=c2A4+B4=c2
10 1 ad2antrr φcA4+B4=c2A
11 2 ad2antrr φcA4+B4=c2B
12 simpr φcA4+B4=c2A4+B4=c2
13 6 9 10 11 12 2rspcedvdw φcA4+B4=c2aba4+b4=c2
14 13 ex φcA4+B4=c2aba4+b4=c2
15 14 ss2rabdv φc|A4+B4=c2c|aba4+b4=c2
16 oveq1 f=if2=i2
17 16 eqeq2d f=ig4+h4=f2g4+h4=i2
18 17 anbi2d f=iggcdh=1g4+h4=f2ggcdh=1g4+h4=i2
19 18 anbi2d f=i¬2gggcdh=1g4+h4=f2¬2gggcdh=1g4+h4=i2
20 19 2rexbidv f=igh¬2gggcdh=1g4+h4=f2gh¬2gggcdh=1g4+h4=i2
21 oveq1 f=lf2=l2
22 21 eqeq2d f=lg4+h4=f2g4+h4=l2
23 22 anbi2d f=lggcdh=1g4+h4=f2ggcdh=1g4+h4=l2
24 23 anbi2d f=l¬2gggcdh=1g4+h4=f2¬2gggcdh=1g4+h4=l2
25 24 2rexbidv f=lgh¬2gggcdh=1g4+h4=f2gh¬2gggcdh=1g4+h4=l2
26 nnuz =1
27 26 eqimssi 1
28 27 a1i φ1
29 breq2 g=j2g2j
30 29 notbid g=j¬2g¬2j
31 oveq1 g=jggcdh=jgcdh
32 31 eqeq1d g=jggcdh=1jgcdh=1
33 oveq1 g=jg4=j4
34 33 oveq1d g=jg4+h4=j4+h4
35 34 eqeq1d g=jg4+h4=i2j4+h4=i2
36 32 35 anbi12d g=jggcdh=1g4+h4=i2jgcdh=1j4+h4=i2
37 30 36 anbi12d g=j¬2gggcdh=1g4+h4=i2¬2jjgcdh=1j4+h4=i2
38 oveq2 h=kjgcdh=jgcdk
39 38 eqeq1d h=kjgcdh=1jgcdk=1
40 oveq1 h=kh4=k4
41 40 oveq2d h=kj4+h4=j4+k4
42 41 eqeq1d h=kj4+h4=i2j4+k4=i2
43 39 42 anbi12d h=kjgcdh=1j4+h4=i2jgcdk=1j4+k4=i2
44 43 anbi2d h=k¬2jjgcdh=1j4+h4=i2¬2jjgcdk=1j4+k4=i2
45 37 44 cbvrex2vw gh¬2gggcdh=1g4+h4=i2jk¬2jjgcdk=1j4+k4=i2
46 simplrl φijk¬2jjgcdk=1j4+k4=i2j
47 simplrr φijk¬2jjgcdk=1j4+k4=i2k
48 simpllr φijk¬2jjgcdk=1j4+k4=i2i
49 simprl φijk¬2jjgcdk=1j4+k4=i2¬2j
50 simprrl φijk¬2jjgcdk=1j4+k4=i2jgcdk=1
51 simprrr φijk¬2jjgcdk=1j4+k4=i2j4+k4=i2
52 46 47 48 49 50 51 flt4lem7 φijk¬2jjgcdk=1j4+k4=i2lgh¬2gggcdh=1g4+h4=l2l<i
53 52 ex φijk¬2jjgcdk=1j4+k4=i2lgh¬2gggcdh=1g4+h4=l2l<i
54 53 rexlimdvva φijk¬2jjgcdk=1j4+k4=i2lgh¬2gggcdh=1g4+h4=l2l<i
55 45 54 biimtrid φigh¬2gggcdh=1g4+h4=i2lgh¬2gggcdh=1g4+h4=l2l<i
56 55 impr φigh¬2gggcdh=1g4+h4=i2lgh¬2gggcdh=1g4+h4=l2l<i
57 20 25 28 56 infdesc φf|gh¬2gggcdh=1g4+h4=f2=
58 breq2 g=d2g2d
59 58 notbid g=d¬2g¬2d
60 oveq1 g=dggcdh=dgcdh
61 60 eqeq1d g=dggcdh=1dgcdh=1
62 oveq1 g=dg4=d4
63 62 oveq1d g=dg4+h4=d4+h4
64 63 eqeq1d g=dg4+h4=f2d4+h4=f2
65 61 64 anbi12d g=dggcdh=1g4+h4=f2dgcdh=1d4+h4=f2
66 59 65 anbi12d g=d¬2gggcdh=1g4+h4=f2¬2ddgcdh=1d4+h4=f2
67 oveq2 h=edgcdh=dgcde
68 67 eqeq1d h=edgcdh=1dgcde=1
69 oveq1 h=eh4=e4
70 69 oveq2d h=ed4+h4=d4+e4
71 70 eqeq1d h=ed4+h4=f2d4+e4=f2
72 68 71 anbi12d h=edgcdh=1d4+h4=f2dgcde=1d4+e4=f2
73 72 anbi2d h=e¬2ddgcdh=1d4+h4=f2¬2ddgcde=1d4+e4=f2
74 simprl φfded
75 74 ad2antrr φfdedgcde=1d4+e4=f2¬2dd
76 simprr φfdee
77 76 ad2antrr φfdedgcde=1d4+e4=f2¬2de
78 simpr φfdedgcde=1d4+e4=f2¬2d¬2d
79 simplr φfdedgcde=1d4+e4=f2¬2ddgcde=1d4+e4=f2
80 78 79 jca φfdedgcde=1d4+e4=f2¬2d¬2ddgcde=1d4+e4=f2
81 66 73 75 77 80 2rspcedvdw φfdedgcde=1d4+e4=f2¬2dgh¬2gggcdh=1g4+h4=f2
82 breq2 g=e2g2e
83 82 notbid g=e¬2g¬2e
84 oveq1 g=eggcdh=egcdh
85 84 eqeq1d g=eggcdh=1egcdh=1
86 oveq1 g=eg4=e4
87 86 oveq1d g=eg4+h4=e4+h4
88 87 eqeq1d g=eg4+h4=f2e4+h4=f2
89 85 88 anbi12d g=eggcdh=1g4+h4=f2egcdh=1e4+h4=f2
90 83 89 anbi12d g=e¬2gggcdh=1g4+h4=f2¬2eegcdh=1e4+h4=f2
91 oveq2 h=degcdh=egcdd
92 91 eqeq1d h=degcdh=1egcdd=1
93 oveq1 h=dh4=d4
94 93 oveq2d h=de4+h4=e4+d4
95 94 eqeq1d h=de4+h4=f2e4+d4=f2
96 92 95 anbi12d h=degcdh=1e4+h4=f2egcdd=1e4+d4=f2
97 96 anbi2d h=d¬2eegcdh=1e4+h4=f2¬2eegcdd=1e4+d4=f2
98 76 ad2antrr φfdedgcde=1d4+e4=f2¬2ee
99 74 ad2antrr φfdedgcde=1d4+e4=f2¬2ed
100 simpr φfdedgcde=1d4+e4=f2¬2e¬2e
101 98 nnzd φfdedgcde=1d4+e4=f2¬2ee
102 99 nnzd φfdedgcde=1d4+e4=f2¬2ed
103 101 102 gcdcomd φfdedgcde=1d4+e4=f2¬2eegcdd=dgcde
104 simplrl φfdedgcde=1d4+e4=f2¬2edgcde=1
105 103 104 eqtrd φfdedgcde=1d4+e4=f2¬2eegcdd=1
106 4nn0 40
107 106 a1i φfdedgcde=1d4+e4=f2¬2e40
108 98 107 nnexpcld φfdedgcde=1d4+e4=f2¬2ee4
109 108 nncnd φfdedgcde=1d4+e4=f2¬2ee4
110 99 107 nnexpcld φfdedgcde=1d4+e4=f2¬2ed4
111 110 nncnd φfdedgcde=1d4+e4=f2¬2ed4
112 109 111 addcomd φfdedgcde=1d4+e4=f2¬2ee4+d4=d4+e4
113 simplrr φfdedgcde=1d4+e4=f2¬2ed4+e4=f2
114 112 113 eqtrd φfdedgcde=1d4+e4=f2¬2ee4+d4=f2
115 100 105 114 jca32 φfdedgcde=1d4+e4=f2¬2e¬2eegcdd=1e4+d4=f2
116 90 97 98 99 115 2rspcedvdw φfdedgcde=1d4+e4=f2¬2egh¬2gggcdh=1g4+h4=f2
117 74 ad2antrr φfdedgcde=1d4+e4=f22dd
118 117 nnsqcld φfdedgcde=1d4+e4=f22dd2
119 76 ad2antrr φfdedgcde=1d4+e4=f22de
120 119 nnsqcld φfdedgcde=1d4+e4=f22de2
121 simp-4r φfdedgcde=1d4+e4=f22df
122 2z 2
123 simplrl φfdedgcde=1d4+e4=f2d
124 123 nnzd φfdedgcde=1d4+e4=f2d
125 2nn 2
126 125 a1i φfdedgcde=1d4+e4=f22
127 dvdsexp2im 2d22d2d2
128 122 124 126 127 mp3an2i φfdedgcde=1d4+e4=f22d2d2
129 128 imp φfdedgcde=1d4+e4=f22d2d2
130 2nn0 20
131 130 a1i φfdedgcde=1d4+e4=f22d20
132 117 nncnd φfdedgcde=1d4+e4=f22dd
133 132 flt4lem φfdedgcde=1d4+e4=f22dd4=d22
134 119 nncnd φfdedgcde=1d4+e4=f22de
135 134 flt4lem φfdedgcde=1d4+e4=f22de4=e22
136 133 135 oveq12d φfdedgcde=1d4+e4=f22dd4+e4=d22+e22
137 simplrr φfdedgcde=1d4+e4=f22dd4+e4=f2
138 136 137 eqtr3d φfdedgcde=1d4+e4=f22dd22+e22=f2
139 simplrl φfdedgcde=1d4+e4=f22ddgcde=1
140 125 a1i φfdedgcde=1d4+e4=f22d2
141 rppwr de2dgcde=1d2gcde2=1
142 117 119 140 141 syl3anc φfdedgcde=1d4+e4=f22ddgcde=1d2gcde2=1
143 139 142 mpd φfdedgcde=1d4+e4=f22dd2gcde2=1
144 118 120 121 131 138 143 fltaccoprm φfdedgcde=1d4+e4=f22dd2gcdf=1
145 118 120 121 129 144 138 flt4lem2 φfdedgcde=1d4+e4=f22d¬2e2
146 119 nnzd φfdedgcde=1d4+e4=f22de
147 dvdsexp2im 2e22e2e2
148 122 146 140 147 mp3an2i φfdedgcde=1d4+e4=f22d2e2e2
149 145 148 mtod φfdedgcde=1d4+e4=f22d¬2e
150 149 ex φfdedgcde=1d4+e4=f22d¬2e
151 imor 2d¬2e¬2d¬2e
152 150 151 sylib φfdedgcde=1d4+e4=f2¬2d¬2e
153 81 116 152 mpjaodan φfdedgcde=1d4+e4=f2gh¬2gggcdh=1g4+h4=f2
154 153 ex φfdedgcde=1d4+e4=f2gh¬2gggcdh=1g4+h4=f2
155 154 rexlimdvva φfdedgcde=1d4+e4=f2gh¬2gggcdh=1g4+h4=f2
156 155 reximdva φfdedgcde=1d4+e4=f2fgh¬2gggcdh=1g4+h4=f2
157 156 con3d φ¬fgh¬2gggcdh=1g4+h4=f2¬fdedgcde=1d4+e4=f2
158 ralnex f¬gh¬2gggcdh=1g4+h4=f2¬fgh¬2gggcdh=1g4+h4=f2
159 ralnex f¬dedgcde=1d4+e4=f2¬fdedgcde=1d4+e4=f2
160 157 158 159 3imtr4g φf¬gh¬2gggcdh=1g4+h4=f2f¬dedgcde=1d4+e4=f2
161 rabeq0 f|gh¬2gggcdh=1g4+h4=f2=f¬gh¬2gggcdh=1g4+h4=f2
162 rabeq0 f|dedgcde=1d4+e4=f2=f¬dedgcde=1d4+e4=f2
163 160 161 162 3imtr4g φf|gh¬2gggcdh=1g4+h4=f2=f|dedgcde=1d4+e4=f2=
164 57 163 mpd φf|dedgcde=1d4+e4=f2=
165 oveq1 f=cagcdb2f2=cagcdb22
166 165 eqeq2d f=cagcdb2d4+e4=f2d4+e4=cagcdb22
167 166 anbi2d f=cagcdb2dgcde=1d4+e4=f2dgcde=1d4+e4=cagcdb22
168 oveq1 d=aagcdbdgcde=aagcdbgcde
169 168 eqeq1d d=aagcdbdgcde=1aagcdbgcde=1
170 oveq1 d=aagcdbd4=aagcdb4
171 170 oveq1d d=aagcdbd4+e4=aagcdb4+e4
172 171 eqeq1d d=aagcdbd4+e4=cagcdb22aagcdb4+e4=cagcdb22
173 169 172 anbi12d d=aagcdbdgcde=1d4+e4=cagcdb22aagcdbgcde=1aagcdb4+e4=cagcdb22
174 oveq2 e=bagcdbaagcdbgcde=aagcdbgcdbagcdb
175 174 eqeq1d e=bagcdbaagcdbgcde=1aagcdbgcdbagcdb=1
176 oveq1 e=bagcdbe4=bagcdb4
177 176 oveq2d e=bagcdbaagcdb4+e4=aagcdb4+bagcdb4
178 177 eqeq1d e=bagcdbaagcdb4+e4=cagcdb22aagcdb4+bagcdb4=cagcdb22
179 175 178 anbi12d e=bagcdbaagcdbgcde=1aagcdb4+e4=cagcdb22aagcdbgcdbagcdb=1aagcdb4+bagcdb4=cagcdb22
180 simplrr φcaba4+b4=c2a
181 simprl φcaba4+b4=c2b
182 simplrl φcaba4+b4=c2c
183 simprr φcaba4+b4=c2a4+b4=c2
184 180 181 182 183 flt4lem6 φcaba4+b4=c2aagcdbbagcdbcagcdb2aagcdb4+bagcdb4=cagcdb22
185 184 simpld φcaba4+b4=c2aagcdbbagcdbcagcdb2
186 185 simp3d φcaba4+b4=c2cagcdb2
187 185 simp1d φcaba4+b4=c2aagcdb
188 185 simp2d φcaba4+b4=c2bagcdb
189 180 nnzd φcaba4+b4=c2a
190 181 nnzd φcaba4+b4=c2b
191 181 nnne0d φcaba4+b4=c2b0
192 divgcdcoprm0 abb0aagcdbgcdbagcdb=1
193 189 190 191 192 syl3anc φcaba4+b4=c2aagcdbgcdbagcdb=1
194 184 simprd φcaba4+b4=c2aagcdb4+bagcdb4=cagcdb22
195 193 194 jca φcaba4+b4=c2aagcdbgcdbagcdb=1aagcdb4+bagcdb4=cagcdb22
196 167 173 179 186 187 188 195 3rspcedvdw φcaba4+b4=c2fdedgcde=1d4+e4=f2
197 196 rexlimdvaa φcaba4+b4=c2fdedgcde=1d4+e4=f2
198 197 rexlimdvva φcaba4+b4=c2fdedgcde=1d4+e4=f2
199 198 con3d φ¬fdedgcde=1d4+e4=f2¬caba4+b4=c2
200 ralnex c¬aba4+b4=c2¬caba4+b4=c2
201 199 159 200 3imtr4g φf¬dedgcde=1d4+e4=f2c¬aba4+b4=c2
202 rabeq0 c|aba4+b4=c2=c¬aba4+b4=c2
203 201 162 202 3imtr4g φf|dedgcde=1d4+e4=f2=c|aba4+b4=c2=
204 164 203 mpd φc|aba4+b4=c2=
205 sseq0 c|A4+B4=c2c|aba4+b4=c2c|aba4+b4=c2=c|A4+B4=c2=
206 15 204 205 syl2anc φc|A4+B4=c2=
207 rabeq0 c|A4+B4=c2=c¬A4+B4=c2
208 206 207 sylib φc¬A4+B4=c2
209 oveq1 c=Cc2=C2
210 209 eqeq2d c=CA4+B4=c2A4+B4=C2
211 210 necon3bbid c=C¬A4+B4=c2A4+B4C2
212 211 rspcv Cc¬A4+B4=c2A4+B4C2
213 3 208 212 sylc φA4+B4C2