| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nna4b4nsq.a |
|
| 2 |
|
nna4b4nsq.b |
|
| 3 |
|
nna4b4nsq.c |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
oveq1d |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
8
|
eqeq1d |
|
| 10 |
1
|
ad2antrr |
|
| 11 |
2
|
ad2antrr |
|
| 12 |
|
simpr |
|
| 13 |
6 9 10 11 12
|
2rspcedvdw |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
ss2rabdv |
|
| 16 |
|
oveq1 |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
17
|
anbi2d |
|
| 19 |
18
|
anbi2d |
|
| 20 |
19
|
2rexbidv |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
anbi2d |
|
| 24 |
23
|
anbi2d |
|
| 25 |
24
|
2rexbidv |
|
| 26 |
|
nnuz |
|
| 27 |
26
|
eqimssi |
|
| 28 |
27
|
a1i |
|
| 29 |
|
breq2 |
|
| 30 |
29
|
notbid |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34
|
eqeq1d |
|
| 36 |
32 35
|
anbi12d |
|
| 37 |
30 36
|
anbi12d |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
|
oveq1 |
|
| 41 |
40
|
oveq2d |
|
| 42 |
41
|
eqeq1d |
|
| 43 |
39 42
|
anbi12d |
|
| 44 |
43
|
anbi2d |
|
| 45 |
37 44
|
cbvrex2vw |
|
| 46 |
|
simplrl |
|
| 47 |
|
simplrr |
|
| 48 |
|
simpllr |
|
| 49 |
|
simprl |
|
| 50 |
|
simprrl |
|
| 51 |
|
simprrr |
|
| 52 |
46 47 48 49 50 51
|
flt4lem7 |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
rexlimdvva |
|
| 55 |
45 54
|
biimtrid |
|
| 56 |
55
|
impr |
|
| 57 |
20 25 28 56
|
infdesc |
|
| 58 |
|
breq2 |
|
| 59 |
58
|
notbid |
|
| 60 |
|
oveq1 |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
|
oveq1 |
|
| 63 |
62
|
oveq1d |
|
| 64 |
63
|
eqeq1d |
|
| 65 |
61 64
|
anbi12d |
|
| 66 |
59 65
|
anbi12d |
|
| 67 |
|
oveq2 |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
|
oveq1 |
|
| 70 |
69
|
oveq2d |
|
| 71 |
70
|
eqeq1d |
|
| 72 |
68 71
|
anbi12d |
|
| 73 |
72
|
anbi2d |
|
| 74 |
|
simprl |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
|
simprr |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
|
simpr |
|
| 79 |
|
simplr |
|
| 80 |
78 79
|
jca |
|
| 81 |
66 73 75 77 80
|
2rspcedvdw |
|
| 82 |
|
breq2 |
|
| 83 |
82
|
notbid |
|
| 84 |
|
oveq1 |
|
| 85 |
84
|
eqeq1d |
|
| 86 |
|
oveq1 |
|
| 87 |
86
|
oveq1d |
|
| 88 |
87
|
eqeq1d |
|
| 89 |
85 88
|
anbi12d |
|
| 90 |
83 89
|
anbi12d |
|
| 91 |
|
oveq2 |
|
| 92 |
91
|
eqeq1d |
|
| 93 |
|
oveq1 |
|
| 94 |
93
|
oveq2d |
|
| 95 |
94
|
eqeq1d |
|
| 96 |
92 95
|
anbi12d |
|
| 97 |
96
|
anbi2d |
|
| 98 |
76
|
ad2antrr |
|
| 99 |
74
|
ad2antrr |
|
| 100 |
|
simpr |
|
| 101 |
98
|
nnzd |
|
| 102 |
99
|
nnzd |
|
| 103 |
101 102
|
gcdcomd |
|
| 104 |
|
simplrl |
|
| 105 |
103 104
|
eqtrd |
|
| 106 |
|
4nn0 |
|
| 107 |
106
|
a1i |
|
| 108 |
98 107
|
nnexpcld |
|
| 109 |
108
|
nncnd |
|
| 110 |
99 107
|
nnexpcld |
|
| 111 |
110
|
nncnd |
|
| 112 |
109 111
|
addcomd |
|
| 113 |
|
simplrr |
|
| 114 |
112 113
|
eqtrd |
|
| 115 |
100 105 114
|
jca32 |
|
| 116 |
90 97 98 99 115
|
2rspcedvdw |
|
| 117 |
74
|
ad2antrr |
|
| 118 |
117
|
nnsqcld |
|
| 119 |
76
|
ad2antrr |
|
| 120 |
119
|
nnsqcld |
|
| 121 |
|
simp-4r |
|
| 122 |
|
2z |
|
| 123 |
|
simplrl |
|
| 124 |
123
|
nnzd |
|
| 125 |
|
2nn |
|
| 126 |
125
|
a1i |
|
| 127 |
|
dvdsexp2im |
|
| 128 |
122 124 126 127
|
mp3an2i |
|
| 129 |
128
|
imp |
|
| 130 |
|
2nn0 |
|
| 131 |
130
|
a1i |
|
| 132 |
117
|
nncnd |
|
| 133 |
132
|
flt4lem |
|
| 134 |
119
|
nncnd |
|
| 135 |
134
|
flt4lem |
|
| 136 |
133 135
|
oveq12d |
|
| 137 |
|
simplrr |
|
| 138 |
136 137
|
eqtr3d |
|
| 139 |
|
simplrl |
|
| 140 |
125
|
a1i |
|
| 141 |
|
rppwr |
|
| 142 |
117 119 140 141
|
syl3anc |
|
| 143 |
139 142
|
mpd |
|
| 144 |
118 120 121 131 138 143
|
fltaccoprm |
|
| 145 |
118 120 121 129 144 138
|
flt4lem2 |
|
| 146 |
119
|
nnzd |
|
| 147 |
|
dvdsexp2im |
|
| 148 |
122 146 140 147
|
mp3an2i |
|
| 149 |
145 148
|
mtod |
|
| 150 |
149
|
ex |
|
| 151 |
|
imor |
|
| 152 |
150 151
|
sylib |
|
| 153 |
81 116 152
|
mpjaodan |
|
| 154 |
153
|
ex |
|
| 155 |
154
|
rexlimdvva |
|
| 156 |
155
|
reximdva |
|
| 157 |
156
|
con3d |
|
| 158 |
|
ralnex |
|
| 159 |
|
ralnex |
|
| 160 |
157 158 159
|
3imtr4g |
|
| 161 |
|
rabeq0 |
|
| 162 |
|
rabeq0 |
|
| 163 |
160 161 162
|
3imtr4g |
|
| 164 |
57 163
|
mpd |
|
| 165 |
|
oveq1 |
|
| 166 |
165
|
eqeq2d |
|
| 167 |
166
|
anbi2d |
|
| 168 |
|
oveq1 |
|
| 169 |
168
|
eqeq1d |
|
| 170 |
|
oveq1 |
|
| 171 |
170
|
oveq1d |
|
| 172 |
171
|
eqeq1d |
|
| 173 |
169 172
|
anbi12d |
|
| 174 |
|
oveq2 |
|
| 175 |
174
|
eqeq1d |
|
| 176 |
|
oveq1 |
|
| 177 |
176
|
oveq2d |
|
| 178 |
177
|
eqeq1d |
|
| 179 |
175 178
|
anbi12d |
|
| 180 |
|
simplrr |
|
| 181 |
|
simprl |
|
| 182 |
|
simplrl |
|
| 183 |
|
simprr |
|
| 184 |
180 181 182 183
|
flt4lem6 |
|
| 185 |
184
|
simpld |
|
| 186 |
185
|
simp3d |
|
| 187 |
185
|
simp1d |
|
| 188 |
185
|
simp2d |
|
| 189 |
180
|
nnzd |
|
| 190 |
181
|
nnzd |
|
| 191 |
181
|
nnne0d |
|
| 192 |
|
divgcdcoprm0 |
|
| 193 |
189 190 191 192
|
syl3anc |
|
| 194 |
184
|
simprd |
|
| 195 |
193 194
|
jca |
|
| 196 |
167 173 179 186 187 188 195
|
3rspcedvdw |
|
| 197 |
196
|
rexlimdvaa |
|
| 198 |
197
|
rexlimdvva |
|
| 199 |
198
|
con3d |
|
| 200 |
|
ralnex |
|
| 201 |
199 159 200
|
3imtr4g |
|
| 202 |
|
rabeq0 |
|
| 203 |
201 162 202
|
3imtr4g |
|
| 204 |
164 203
|
mpd |
|
| 205 |
|
sseq0 |
|
| 206 |
15 204 205
|
syl2anc |
|
| 207 |
|
rabeq0 |
|
| 208 |
206 207
|
sylib |
|
| 209 |
|
oveq1 |
|
| 210 |
209
|
eqeq2d |
|
| 211 |
210
|
necon3bbid |
|
| 212 |
211
|
rspcv |
|
| 213 |
3 208 212
|
sylc |
|