Step |
Hyp |
Ref |
Expression |
1 |
|
ordtval.1 |
|
2 |
|
ordtval.2 |
|
3 |
|
ordtval.3 |
|
4 |
|
ordtval.4 |
|
5 |
|
ssun1 |
|
6 |
|
ssun2 |
|
7 |
1 2 3
|
ordtuni |
|
8 |
|
dmexg |
|
9 |
1 8
|
eqeltrid |
|
10 |
7 9
|
eqeltrrd |
|
11 |
|
uniexb |
|
12 |
10 11
|
sylibr |
|
13 |
|
ssexg |
|
14 |
6 12 13
|
sylancr |
|
15 |
|
ssexg |
|
16 |
5 14 15
|
sylancr |
|
17 |
|
ssun2 |
|
18 |
|
ssexg |
|
19 |
17 14 18
|
sylancr |
|
20 |
|
elfiun |
|
21 |
16 19 20
|
syl2anc |
|
22 |
1 2
|
ordtbaslem |
|
23 |
22 5
|
eqsstrdi |
|
24 |
|
ssun1 |
|
25 |
23 24
|
sstrdi |
|
26 |
25
|
sseld |
|
27 |
|
cnvtsr |
|
28 |
|
df-rn |
|
29 |
|
eqid |
|
30 |
28 29
|
ordtbaslem |
|
31 |
27 30
|
syl |
|
32 |
|
tsrps |
|
33 |
1
|
psrn |
|
34 |
32 33
|
syl |
|
35 |
|
vex |
|
36 |
|
vex |
|
37 |
35 36
|
brcnv |
|
38 |
37
|
bicomi |
|
39 |
38
|
notbii |
|
40 |
39
|
a1i |
|
41 |
34 40
|
rabeqbidv |
|
42 |
34 41
|
mpteq12dv |
|
43 |
42
|
rneqd |
|
44 |
3 43
|
eqtrid |
|
45 |
44
|
fveq2d |
|
46 |
31 45 44
|
3eqtr4d |
|
47 |
46 17
|
eqsstrdi |
|
48 |
47 24
|
sstrdi |
|
49 |
48
|
sseld |
|
50 |
|
ssun2 |
|
51 |
22 2
|
eqtrdi |
|
52 |
51
|
eleq2d |
|
53 |
|
breq2 |
|
54 |
53
|
notbid |
|
55 |
54
|
rabbidv |
|
56 |
55
|
cbvmptv |
|
57 |
56
|
elrnmpt |
|
58 |
57
|
elv |
|
59 |
52 58
|
bitrdi |
|
60 |
46 3
|
eqtrdi |
|
61 |
60
|
eleq2d |
|
62 |
|
breq1 |
|
63 |
62
|
notbid |
|
64 |
63
|
rabbidv |
|
65 |
64
|
cbvmptv |
|
66 |
65
|
elrnmpt |
|
67 |
66
|
elv |
|
68 |
61 67
|
bitrdi |
|
69 |
59 68
|
anbi12d |
|
70 |
|
reeanv |
|
71 |
|
ineq12 |
|
72 |
|
inrab |
|
73 |
71 72
|
eqtrdi |
|
74 |
73
|
reximi |
|
75 |
74
|
reximi |
|
76 |
70 75
|
sylbir |
|
77 |
69 76
|
syl6bi |
|
78 |
77
|
imp |
|
79 |
|
vex |
|
80 |
79
|
inex1 |
|
81 |
|
eqid |
|
82 |
81
|
elrnmpog |
|
83 |
80 82
|
ax-mp |
|
84 |
78 83
|
sylibr |
|
85 |
84 4
|
eleqtrrdi |
|
86 |
50 85
|
sselid |
|
87 |
|
eleq1 |
|
88 |
86 87
|
syl5ibrcom |
|
89 |
88
|
rexlimdvva |
|
90 |
26 49 89
|
3jaod |
|
91 |
21 90
|
sylbid |
|
92 |
91
|
ssrdv |
|
93 |
|
ssfii |
|
94 |
14 93
|
syl |
|
95 |
94
|
adantr |
|
96 |
|
simprl |
|
97 |
|
eqidd |
|
98 |
55
|
rspceeqv |
|
99 |
96 97 98
|
syl2anc |
|
100 |
9
|
adantr |
|
101 |
|
rabexg |
|
102 |
|
eqid |
|
103 |
102
|
elrnmpt |
|
104 |
100 101 103
|
3syl |
|
105 |
99 104
|
mpbird |
|
106 |
105 2
|
eleqtrrdi |
|
107 |
5 106
|
sselid |
|
108 |
95 107
|
sseldd |
|
109 |
|
simprr |
|
110 |
|
eqidd |
|
111 |
64
|
rspceeqv |
|
112 |
109 110 111
|
syl2anc |
|
113 |
|
rabexg |
|
114 |
|
eqid |
|
115 |
114
|
elrnmpt |
|
116 |
100 113 115
|
3syl |
|
117 |
112 116
|
mpbird |
|
118 |
117 3
|
eleqtrrdi |
|
119 |
17 118
|
sselid |
|
120 |
95 119
|
sseldd |
|
121 |
|
fiin |
|
122 |
108 120 121
|
syl2anc |
|
123 |
72 122
|
eqeltrrid |
|
124 |
123
|
ralrimivva |
|
125 |
81
|
fmpo |
|
126 |
124 125
|
sylib |
|
127 |
126
|
frnd |
|
128 |
4 127
|
eqsstrid |
|
129 |
94 128
|
unssd |
|
130 |
92 129
|
eqssd |
|