Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|
2 |
|
plydiv.tm |
|
3 |
|
plydiv.rc |
|
4 |
|
plydiv.m1 |
|
5 |
|
plydiv.f |
|
6 |
|
plydiv.g |
|
7 |
|
plydiv.z |
|
8 |
|
plydiv.r |
|
9 |
|
plydiveu.q |
|
10 |
|
plydiveu.qd |
|
11 |
|
plydiveu.t |
|
12 |
|
plydiveu.p |
|
13 |
|
plydiveu.pd |
|
14 |
|
idd |
|
15 |
1 2 3 4 5 6 7 8
|
plydivlem2 |
|
16 |
9 15
|
mpdan |
|
17 |
1 2 3 4 5 6 7 11
|
plydivlem2 |
|
18 |
12 17
|
mpdan |
|
19 |
16 18 1 2 4
|
plysub |
|
20 |
|
dgrcl |
|
21 |
19 20
|
syl |
|
22 |
21
|
nn0red |
|
23 |
|
dgrcl |
|
24 |
18 23
|
syl |
|
25 |
24
|
nn0red |
|
26 |
|
dgrcl |
|
27 |
16 26
|
syl |
|
28 |
27
|
nn0red |
|
29 |
25 28
|
ifcld |
|
30 |
|
dgrcl |
|
31 |
6 30
|
syl |
|
32 |
31
|
nn0red |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 34
|
dgrsub |
|
36 |
16 18 35
|
syl2anc |
|
37 |
|
eqid |
|
38 |
34 37
|
dgrlt |
|
39 |
18 31 38
|
syl2anc |
|
40 |
13 39
|
mpbid |
|
41 |
40
|
simpld |
|
42 |
|
eqid |
|
43 |
33 42
|
dgrlt |
|
44 |
16 31 43
|
syl2anc |
|
45 |
10 44
|
mpbid |
|
46 |
45
|
simpld |
|
47 |
|
breq1 |
|
48 |
|
breq1 |
|
49 |
47 48
|
ifboth |
|
50 |
41 46 49
|
syl2anc |
|
51 |
22 29 32 36 50
|
letrd |
|
52 |
51
|
adantr |
|
53 |
12 9 1 2 4
|
plysub |
|
54 |
|
dgrcl |
|
55 |
53 54
|
syl |
|
56 |
|
nn0addge1 |
|
57 |
32 55 56
|
syl2anc |
|
58 |
57
|
adantr |
|
59 |
|
plyf |
|
60 |
5 59
|
syl |
|
61 |
60
|
ffvelrnda |
|
62 |
6 9 1 2
|
plymul |
|
63 |
|
plyf |
|
64 |
62 63
|
syl |
|
65 |
64
|
ffvelrnda |
|
66 |
6 12 1 2
|
plymul |
|
67 |
|
plyf |
|
68 |
66 67
|
syl |
|
69 |
68
|
ffvelrnda |
|
70 |
61 65 69
|
nnncan1d |
|
71 |
70
|
mpteq2dva |
|
72 |
|
cnex |
|
73 |
72
|
a1i |
|
74 |
61 65
|
subcld |
|
75 |
61 69
|
subcld |
|
76 |
60
|
feqmptd |
|
77 |
64
|
feqmptd |
|
78 |
73 61 65 76 77
|
offval2 |
|
79 |
8 78
|
eqtrid |
|
80 |
68
|
feqmptd |
|
81 |
73 61 69 76 80
|
offval2 |
|
82 |
11 81
|
eqtrid |
|
83 |
73 74 75 79 82
|
offval2 |
|
84 |
73 69 65 80 77
|
offval2 |
|
85 |
71 83 84
|
3eqtr4d |
|
86 |
|
plyf |
|
87 |
6 86
|
syl |
|
88 |
|
plyf |
|
89 |
12 88
|
syl |
|
90 |
|
plyf |
|
91 |
9 90
|
syl |
|
92 |
|
subdi |
|
93 |
92
|
adantl |
|
94 |
73 87 89 91 93
|
caofdi |
|
95 |
85 94
|
eqtr4d |
|
96 |
95
|
fveq2d |
|
97 |
96
|
adantr |
|
98 |
6
|
adantr |
|
99 |
7
|
adantr |
|
100 |
53
|
adantr |
|
101 |
|
simpr |
|
102 |
|
eqid |
|
103 |
|
eqid |
|
104 |
102 103
|
dgrmul |
|
105 |
98 99 100 101 104
|
syl22anc |
|
106 |
97 105
|
eqtrd |
|
107 |
58 106
|
breqtrrd |
|
108 |
22 32
|
letri3d |
|
109 |
108
|
adantr |
|
110 |
52 107 109
|
mpbir2and |
|
111 |
110
|
fveq2d |
|
112 |
42 37
|
coesub |
|
113 |
16 18 112
|
syl2anc |
|
114 |
113
|
fveq1d |
|
115 |
42
|
coef3 |
|
116 |
|
ffn |
|
117 |
16 115 116
|
3syl |
|
118 |
37
|
coef3 |
|
119 |
|
ffn |
|
120 |
18 118 119
|
3syl |
|
121 |
|
nn0ex |
|
122 |
121
|
a1i |
|
123 |
|
inidm |
|
124 |
45
|
simprd |
|
125 |
124
|
adantr |
|
126 |
40
|
simprd |
|
127 |
126
|
adantr |
|
128 |
117 120 122 122 123 125 127
|
ofval |
|
129 |
31 128
|
mpdan |
|
130 |
114 129
|
eqtrd |
|
131 |
|
0m0e0 |
|
132 |
130 131
|
eqtrdi |
|
133 |
132
|
adantr |
|
134 |
111 133
|
eqtrd |
|
135 |
|
eqid |
|
136 |
|
eqid |
|
137 |
135 136
|
dgreq0 |
|
138 |
19 137
|
syl |
|
139 |
138
|
biimpar |
|
140 |
134 139
|
syldan |
|
141 |
140
|
ex |
|
142 |
|
plymul0or |
|
143 |
6 53 142
|
syl2anc |
|
144 |
95
|
eqeq1d |
|
145 |
7
|
neneqd |
|
146 |
|
biorf |
|
147 |
145 146
|
syl |
|
148 |
143 144 147
|
3bitr4d |
|
149 |
141 148
|
sylibd |
|
150 |
14 149
|
pm2.61dne |
|
151 |
|
df-0p |
|
152 |
150 151
|
eqtrdi |
|
153 |
|
ofsubeq0 |
|
154 |
72 89 91 153
|
mp3an2i |
|
155 |
152 154
|
mpbid |
|