Metamath Proof Explorer


Theorem pm2mpghm

Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P=Poly1R
pm2mpfo.c C=NMatP
pm2mpfo.b B=BaseC
pm2mpfo.m ˙=Q
pm2mpfo.e ×˙=mulGrpQ
pm2mpfo.x X=var1A
pm2mpfo.a A=NMatR
pm2mpfo.q Q=Poly1A
pm2mpfo.l L=BaseQ
pm2mpfo.t T=NpMatToMatPolyR
Assertion pm2mpghm NFinRRingTCGrpHomQ

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P=Poly1R
2 pm2mpfo.c C=NMatP
3 pm2mpfo.b B=BaseC
4 pm2mpfo.m ˙=Q
5 pm2mpfo.e ×˙=mulGrpQ
6 pm2mpfo.x X=var1A
7 pm2mpfo.a A=NMatR
8 pm2mpfo.q Q=Poly1A
9 pm2mpfo.l L=BaseQ
10 pm2mpfo.t T=NpMatToMatPolyR
11 eqid +C=+C
12 eqid +Q=+Q
13 1 2 pmatring NFinRRingCRing
14 ringgrp CRingCGrp
15 13 14 syl NFinRRingCGrp
16 7 matring NFinRRingARing
17 8 ply1ring ARingQRing
18 16 17 syl NFinRRingQRing
19 ringgrp QRingQGrp
20 18 19 syl NFinRRingQGrp
21 1 2 3 4 5 6 7 8 10 9 pm2mpf NFinRRingT:BL
22 ringmnd CRingCMnd
23 13 22 syl NFinRRingCMnd
24 23 anim1i NFinRRingaBbBCMndaBbB
25 3anass CMndaBbBCMndaBbB
26 24 25 sylibr NFinRRingaBbBCMndaBbB
27 3 11 mndcl CMndaBbBa+CbB
28 26 27 syl NFinRRingaBbBa+CbB
29 2 3 decpmatval a+CbBk0a+CbdecompPMatk=iN,jNcoe1ia+Cbjk
30 28 29 sylan NFinRRingaBbBk0a+CbdecompPMatk=iN,jNcoe1ia+Cbjk
31 simplll NFinRRingaBbBk0NFin
32 fvexd NFinRRingaBbBk0iNjNcoe1iajkV
33 fvexd NFinRRingaBbBk0iNjNcoe1ibjkV
34 eqidd NFinRRingaBbBk0iN,jNcoe1iajk=iN,jNcoe1iajk
35 eqidd NFinRRingaBbBk0iN,jNcoe1ibjk=iN,jNcoe1ibjk
36 31 31 32 33 34 35 offval22 NFinRRingaBbBk0iN,jNcoe1iajk+RfiN,jNcoe1ibjk=iN,jNcoe1iajk+Rcoe1ibjk
37 eqid BaseR=BaseR
38 eqid BaseA=BaseA
39 simpllr NFinRRingaBbBk0RRing
40 simprl NFinRRingaBiNjNiN
41 simprr NFinRRingaBiNjNjN
42 3 eleq2i aBaBaseC
43 42 biimpi aBaBaseC
44 43 ad2antlr NFinRRingaBiNjNaBaseC
45 eqid BaseP=BaseP
46 2 45 matecl iNjNaBaseCiajBaseP
47 40 41 44 46 syl3anc NFinRRingaBiNjNiajBaseP
48 47 ex NFinRRingaBiNjNiajBaseP
49 48 adantrr NFinRRingaBbBiNjNiajBaseP
50 49 adantr NFinRRingaBbBk0iNjNiajBaseP
51 50 3impib NFinRRingaBbBk0iNjNiajBaseP
52 simpr NFinRRingaBbBk0k0
53 52 3ad2ant1 NFinRRingaBbBk0iNjNk0
54 eqid coe1iaj=coe1iaj
55 54 45 1 37 coe1fvalcl iajBasePk0coe1iajkBaseR
56 51 53 55 syl2anc NFinRRingaBbBk0iNjNcoe1iajkBaseR
57 7 37 38 31 39 56 matbas2d NFinRRingaBbBk0iN,jNcoe1iajkBaseA
58 simprl NFinRRingbBiNjNiN
59 simprr NFinRRingbBiNjNjN
60 3 eleq2i bBbBaseC
61 60 biimpi bBbBaseC
62 61 ad2antlr NFinRRingbBiNjNbBaseC
63 2 45 matecl iNjNbBaseCibjBaseP
64 58 59 62 63 syl3anc NFinRRingbBiNjNibjBaseP
65 64 ex NFinRRingbBiNjNibjBaseP
66 65 adantrl NFinRRingaBbBiNjNibjBaseP
67 66 adantr NFinRRingaBbBk0iNjNibjBaseP
68 67 3impib NFinRRingaBbBk0iNjNibjBaseP
69 eqid coe1ibj=coe1ibj
70 69 45 1 37 coe1fvalcl ibjBasePk0coe1ibjkBaseR
71 68 53 70 syl2anc NFinRRingaBbBk0iNjNcoe1ibjkBaseR
72 7 37 38 31 39 71 matbas2d NFinRRingaBbBk0iN,jNcoe1ibjkBaseA
73 eqid +A=+A
74 eqid +R=+R
75 7 38 73 74 matplusg2 iN,jNcoe1iajkBaseAiN,jNcoe1ibjkBaseAiN,jNcoe1iajk+AiN,jNcoe1ibjk=iN,jNcoe1iajk+RfiN,jNcoe1ibjk
76 57 72 75 syl2anc NFinRRingaBbBk0iN,jNcoe1iajk+AiN,jNcoe1ibjk=iN,jNcoe1iajk+RfiN,jNcoe1ibjk
77 simplr NFinRRingaBbBk0aBbB
78 77 anim1i NFinRRingaBbBk0iNjNaBbBiNjN
79 78 3impb NFinRRingaBbBk0iNjNaBbBiNjN
80 eqid +P=+P
81 2 3 11 80 matplusgcell aBbBiNjNia+Cbj=iaj+Pibj
82 79 81 syl NFinRRingaBbBk0iNjNia+Cbj=iaj+Pibj
83 82 fveq2d NFinRRingaBbBk0iNjNcoe1ia+Cbj=coe1iaj+Pibj
84 83 fveq1d NFinRRingaBbBk0iNjNcoe1ia+Cbjk=coe1iaj+Pibjk
85 39 3ad2ant1 NFinRRingaBbBk0iNjNRRing
86 1 45 80 74 coe1addfv RRingiajBasePibjBasePk0coe1iaj+Pibjk=coe1iajk+Rcoe1ibjk
87 85 51 68 53 86 syl31anc NFinRRingaBbBk0iNjNcoe1iaj+Pibjk=coe1iajk+Rcoe1ibjk
88 84 87 eqtrd NFinRRingaBbBk0iNjNcoe1ia+Cbjk=coe1iajk+Rcoe1ibjk
89 88 mpoeq3dva NFinRRingaBbBk0iN,jNcoe1ia+Cbjk=iN,jNcoe1iajk+Rcoe1ibjk
90 36 76 89 3eqtr4rd NFinRRingaBbBk0iN,jNcoe1ia+Cbjk=iN,jNcoe1iajk+AiN,jNcoe1ibjk
91 8 ply1sca ARingA=ScalarQ
92 16 91 syl NFinRRingA=ScalarQ
93 92 ad2antrr NFinRRingaBbBk0A=ScalarQ
94 93 fveq2d NFinRRingaBbBk0+A=+ScalarQ
95 simprl NFinRRingaBbBaB
96 2 3 decpmatval aBk0adecompPMatk=iN,jNcoe1iajk
97 95 96 sylan NFinRRingaBbBk0adecompPMatk=iN,jNcoe1iajk
98 97 eqcomd NFinRRingaBbBk0iN,jNcoe1iajk=adecompPMatk
99 simprr NFinRRingaBbBbB
100 2 3 decpmatval bBk0bdecompPMatk=iN,jNcoe1ibjk
101 99 100 sylan NFinRRingaBbBk0bdecompPMatk=iN,jNcoe1ibjk
102 101 eqcomd NFinRRingaBbBk0iN,jNcoe1ibjk=bdecompPMatk
103 94 98 102 oveq123d NFinRRingaBbBk0iN,jNcoe1iajk+AiN,jNcoe1ibjk=adecompPMatk+ScalarQbdecompPMatk
104 30 90 103 3eqtrd NFinRRingaBbBk0a+CbdecompPMatk=adecompPMatk+ScalarQbdecompPMatk
105 104 oveq1d NFinRRingaBbBk0a+CbdecompPMatk˙k×˙X=adecompPMatk+ScalarQbdecompPMatk˙k×˙X
106 8 ply1lmod ARingQLMod
107 16 106 syl NFinRRingQLMod
108 107 ad2antrr NFinRRingaBbBk0QLMod
109 simpl aBbBaB
110 109 ad2antlr NFinRRingaBbBk0aB
111 1 2 3 7 38 decpmatcl RRingaBk0adecompPMatkBaseA
112 39 110 52 111 syl3anc NFinRRingaBbBk0adecompPMatkBaseA
113 92 eqcomd NFinRRingScalarQ=A
114 113 ad2antrr NFinRRingaBbBk0ScalarQ=A
115 114 fveq2d NFinRRingaBbBk0BaseScalarQ=BaseA
116 112 115 eleqtrrd NFinRRingaBbBk0adecompPMatkBaseScalarQ
117 simpr aBbBbB
118 117 ad2antlr NFinRRingaBbBk0bB
119 1 2 3 7 38 decpmatcl RRingbBk0bdecompPMatkBaseA
120 39 118 52 119 syl3anc NFinRRingaBbBk0bdecompPMatkBaseA
121 120 115 eleqtrrd NFinRRingaBbBk0bdecompPMatkBaseScalarQ
122 eqid mulGrpQ=mulGrpQ
123 122 9 mgpbas L=BasemulGrpQ
124 122 ringmgp QRingmulGrpQMnd
125 18 124 syl NFinRRingmulGrpQMnd
126 125 ad2antrr NFinRRingaBbBk0mulGrpQMnd
127 6 8 9 vr1cl ARingXL
128 16 127 syl NFinRRingXL
129 128 ad2antrr NFinRRingaBbBk0XL
130 123 5 126 52 129 mulgnn0cld NFinRRingaBbBk0k×˙XL
131 eqid ScalarQ=ScalarQ
132 eqid BaseScalarQ=BaseScalarQ
133 eqid +ScalarQ=+ScalarQ
134 9 12 131 4 132 133 lmodvsdir QLModadecompPMatkBaseScalarQbdecompPMatkBaseScalarQk×˙XLadecompPMatk+ScalarQbdecompPMatk˙k×˙X=adecompPMatk˙k×˙X+QbdecompPMatk˙k×˙X
135 108 116 121 130 134 syl13anc NFinRRingaBbBk0adecompPMatk+ScalarQbdecompPMatk˙k×˙X=adecompPMatk˙k×˙X+QbdecompPMatk˙k×˙X
136 105 135 eqtrd NFinRRingaBbBk0a+CbdecompPMatk˙k×˙X=adecompPMatk˙k×˙X+QbdecompPMatk˙k×˙X
137 136 mpteq2dva NFinRRingaBbBk0a+CbdecompPMatk˙k×˙X=k0adecompPMatk˙k×˙X+QbdecompPMatk˙k×˙X
138 137 oveq2d NFinRRingaBbBQk0a+CbdecompPMatk˙k×˙X=Qk0adecompPMatk˙k×˙X+QbdecompPMatk˙k×˙X
139 eqid 0Q=0Q
140 ringcmn QRingQCMnd
141 18 140 syl NFinRRingQCMnd
142 141 adantr NFinRRingaBbBQCMnd
143 nn0ex 0V
144 143 a1i NFinRRingaBbB0V
145 109 anim2i NFinRRingaBbBNFinRRingaB
146 df-3an NFinRRingaBNFinRRingaB
147 145 146 sylibr NFinRRingaBbBNFinRRingaB
148 1 2 3 4 5 6 7 8 9 pm2mpghmlem1 NFinRRingaBk0adecompPMatk˙k×˙XL
149 147 148 sylan NFinRRingaBbBk0adecompPMatk˙k×˙XL
150 117 anim2i NFinRRingaBbBNFinRRingbB
151 df-3an NFinRRingbBNFinRRingbB
152 150 151 sylibr NFinRRingaBbBNFinRRingbB
153 1 2 3 4 5 6 7 8 9 pm2mpghmlem1 NFinRRingbBk0bdecompPMatk˙k×˙XL
154 152 153 sylan NFinRRingaBbBk0bdecompPMatk˙k×˙XL
155 eqidd NFinRRingaBbBk0adecompPMatk˙k×˙X=k0adecompPMatk˙k×˙X
156 eqidd NFinRRingaBbBk0bdecompPMatk˙k×˙X=k0bdecompPMatk˙k×˙X
157 1 2 3 4 5 6 7 8 pm2mpghmlem2 NFinRRingaBfinSupp0Qk0adecompPMatk˙k×˙X
158 147 157 syl NFinRRingaBbBfinSupp0Qk0adecompPMatk˙k×˙X
159 1 2 3 4 5 6 7 8 pm2mpghmlem2 NFinRRingbBfinSupp0Qk0bdecompPMatk˙k×˙X
160 152 159 syl NFinRRingaBbBfinSupp0Qk0bdecompPMatk˙k×˙X
161 9 139 12 142 144 149 154 155 156 158 160 gsummptfsadd NFinRRingaBbBQk0adecompPMatk˙k×˙X+QbdecompPMatk˙k×˙X=Qk0adecompPMatk˙k×˙X+QQk0bdecompPMatk˙k×˙X
162 138 161 eqtrd NFinRRingaBbBQk0a+CbdecompPMatk˙k×˙X=Qk0adecompPMatk˙k×˙X+QQk0bdecompPMatk˙k×˙X
163 simpll NFinRRingaBbBNFin
164 simplr NFinRRingaBbBRRing
165 1 2 3 4 5 6 7 8 10 pm2mpfval NFinRRinga+CbBTa+Cb=Qk0a+CbdecompPMatk˙k×˙X
166 163 164 28 165 syl3anc NFinRRingaBbBTa+Cb=Qk0a+CbdecompPMatk˙k×˙X
167 1 2 3 4 5 6 7 8 10 pm2mpfval NFinRRingaBTa=Qk0adecompPMatk˙k×˙X
168 163 164 95 167 syl3anc NFinRRingaBbBTa=Qk0adecompPMatk˙k×˙X
169 1 2 3 4 5 6 7 8 10 pm2mpfval NFinRRingbBTb=Qk0bdecompPMatk˙k×˙X
170 163 164 99 169 syl3anc NFinRRingaBbBTb=Qk0bdecompPMatk˙k×˙X
171 168 170 oveq12d NFinRRingaBbBTa+QTb=Qk0adecompPMatk˙k×˙X+QQk0bdecompPMatk˙k×˙X
172 162 166 171 3eqtr4d NFinRRingaBbBTa+Cb=Ta+QTb
173 3 9 11 12 15 20 21 172 isghmd NFinRRingTCGrpHomQ