Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|
2 |
|
pntlem1.a |
|
3 |
|
pntlem1.b |
|
4 |
|
pntlem1.l |
|
5 |
|
pntlem1.d |
|
6 |
|
pntlem1.f |
|
7 |
|
pntlem1.u |
|
8 |
|
pntlem1.u2 |
|
9 |
|
pntlem1.e |
|
10 |
|
pntlem1.k |
|
11 |
|
pntlem1.y |
|
12 |
|
pntlem1.x |
|
13 |
|
pntlem1.c |
|
14 |
|
pntlem1.w |
|
15 |
|
pntlem1.z |
|
16 |
|
pntlem1.m |
|
17 |
|
pntlem1.n |
|
18 |
|
pntlem1.U |
|
19 |
|
pntlem1.K |
|
20 |
|
2re |
|
21 |
|
fzfid |
|
22 |
|
elfznn |
|
23 |
22
|
adantl |
|
24 |
23
|
nnrpd |
|
25 |
24
|
relogcld |
|
26 |
25 23
|
nndivred |
|
27 |
21 26
|
fsumrecl |
|
28 |
|
remulcl |
|
29 |
20 27 28
|
sylancr |
|
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
31 |
30
|
simp1d |
|
32 |
31
|
relogcld |
|
33 |
|
peano2re |
|
34 |
32 33
|
syl |
|
35 |
34
|
resqcld |
|
36 |
|
3re |
|
37 |
|
readdcl |
|
38 |
32 36 37
|
sylancl |
|
39 |
38 32
|
remulcld |
|
40 |
31
|
rpred |
|
41 |
11
|
simpld |
|
42 |
40 41
|
rerpdivcld |
|
43 |
|
1red |
|
44 |
31
|
rpsqrtcld |
|
45 |
44
|
rpred |
|
46 |
|
ere |
|
47 |
46
|
a1i |
|
48 |
|
1re |
|
49 |
|
1lt2 |
|
50 |
|
egt2lt3 |
|
51 |
50
|
simpli |
|
52 |
48 20 46
|
lttri |
|
53 |
49 51 52
|
mp2an |
|
54 |
48 46 53
|
ltleii |
|
55 |
54
|
a1i |
|
56 |
30
|
simp2d |
|
57 |
56
|
simp2d |
|
58 |
43 47 45 55 57
|
letrd |
|
59 |
56
|
simp3d |
|
60 |
43 45 42 58 59
|
letrd |
|
61 |
|
flge1nn |
|
62 |
42 60 61
|
syl2anc |
|
63 |
62
|
nnrpd |
|
64 |
63
|
relogcld |
|
65 |
64 43
|
readdcld |
|
66 |
65
|
resqcld |
|
67 |
|
logdivbnd |
|
68 |
62 67
|
syl |
|
69 |
20
|
a1i |
|
70 |
|
2pos |
|
71 |
70
|
a1i |
|
72 |
|
lemuldiv2 |
|
73 |
27 66 69 71 72
|
syl112anc |
|
74 |
68 73
|
mpbird |
|
75 |
|
reflcl |
|
76 |
42 75
|
syl |
|
77 |
|
flle |
|
78 |
42 77
|
syl |
|
79 |
11
|
simprd |
|
80 |
|
1rp |
|
81 |
80
|
a1i |
|
82 |
81 41 31
|
lediv2d |
|
83 |
79 82
|
mpbid |
|
84 |
40
|
recnd |
|
85 |
84
|
div1d |
|
86 |
83 85
|
breqtrd |
|
87 |
76 42 40 78 86
|
letrd |
|
88 |
63 31
|
logled |
|
89 |
87 88
|
mpbid |
|
90 |
64 32 43 89
|
leadd1dd |
|
91 |
|
0red |
|
92 |
|
log1 |
|
93 |
62
|
nnge1d |
|
94 |
|
logleb |
|
95 |
80 63 94
|
sylancr |
|
96 |
93 95
|
mpbid |
|
97 |
92 96
|
eqbrtrrid |
|
98 |
64
|
lep1d |
|
99 |
91 64 65 97 98
|
letrd |
|
100 |
91 65 34 99 90
|
letrd |
|
101 |
65 34 99 100
|
le2sqd |
|
102 |
90 101
|
mpbid |
|
103 |
29 66 35 74 102
|
letrd |
|
104 |
32
|
resqcld |
|
105 |
69 32
|
remulcld |
|
106 |
104 105
|
readdcld |
|
107 |
|
loge |
|
108 |
44
|
rpge0d |
|
109 |
45 45 108 58
|
lemulge12d |
|
110 |
31
|
rprege0d |
|
111 |
|
remsqsqrt |
|
112 |
110 111
|
syl |
|
113 |
109 112
|
breqtrd |
|
114 |
47 45 40 57 113
|
letrd |
|
115 |
|
epr |
|
116 |
|
logleb |
|
117 |
115 31 116
|
sylancr |
|
118 |
114 117
|
mpbid |
|
119 |
107 118
|
eqbrtrrid |
|
120 |
43 32 106 119
|
leadd2dd |
|
121 |
32
|
recnd |
|
122 |
|
binom21 |
|
123 |
121 122
|
syl |
|
124 |
121
|
sqvald |
|
125 |
|
df-3 |
|
126 |
125
|
oveq1i |
|
127 |
|
2cnd |
|
128 |
|
1cnd |
|
129 |
127 128 121
|
adddird |
|
130 |
126 129
|
eqtrid |
|
131 |
121
|
mulid2d |
|
132 |
131
|
oveq2d |
|
133 |
130 132
|
eqtr2d |
|
134 |
124 133
|
oveq12d |
|
135 |
121
|
sqcld |
|
136 |
|
2cn |
|
137 |
|
mulcl |
|
138 |
136 121 137
|
sylancr |
|
139 |
135 138 121
|
addassd |
|
140 |
|
3cn |
|
141 |
140
|
a1i |
|
142 |
121 141 121
|
adddird |
|
143 |
134 139 142
|
3eqtr4rd |
|
144 |
120 123 143
|
3brtr4d |
|
145 |
29 35 39 103 144
|
letrd |
|
146 |
29 39 7
|
lemul2d |
|
147 |
145 146
|
mpbid |
|
148 |
7
|
rpred |
|
149 |
148
|
adantr |
|
150 |
149
|
recnd |
|
151 |
25
|
recnd |
|
152 |
24
|
rpcnne0d |
|
153 |
|
div23 |
|
154 |
|
divass |
|
155 |
153 154
|
eqtr3d |
|
156 |
150 151 152 155
|
syl3anc |
|
157 |
156
|
sumeq2dv |
|
158 |
148
|
recnd |
|
159 |
26
|
recnd |
|
160 |
21 158 159
|
fsummulc2 |
|
161 |
157 160
|
eqtr4d |
|
162 |
161
|
oveq2d |
|
163 |
27
|
recnd |
|
164 |
127 158 163
|
mul12d |
|
165 |
162 164
|
eqtrd |
|
166 |
38
|
recnd |
|
167 |
158 166 121
|
mulassd |
|
168 |
147 165 167
|
3brtr4d |
|