Metamath Proof Explorer


Theorem pntlemk

Description: Lemma for pnt . Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
pntlem1.U φzY+∞RzzU
pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
Assertion pntlemk φ2n=1ZYUnlognUlogZ+3logZ

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 pntlem1.U φzY+∞RzzU
19 pntlem1.K φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
20 2re 2
21 fzfid φ1ZYFin
22 elfznn n1ZYn
23 22 adantl φn1ZYn
24 23 nnrpd φn1ZYn+
25 24 relogcld φn1ZYlogn
26 25 23 nndivred φn1ZYlognn
27 21 26 fsumrecl φn=1ZYlognn
28 remulcl 2n=1ZYlognn2n=1ZYlognn
29 20 27 28 sylancr φ2n=1ZYlognn
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
31 30 simp1d φZ+
32 31 relogcld φlogZ
33 peano2re logZlogZ+1
34 32 33 syl φlogZ+1
35 34 resqcld φlogZ+12
36 3re 3
37 readdcl logZ3logZ+3
38 32 36 37 sylancl φlogZ+3
39 38 32 remulcld φlogZ+3logZ
40 31 rpred φZ
41 11 simpld φY+
42 40 41 rerpdivcld φZY
43 1red φ1
44 31 rpsqrtcld φZ+
45 44 rpred φZ
46 ere e
47 46 a1i φe
48 1re 1
49 1lt2 1<2
50 egt2lt3 2<ee<3
51 50 simpli 2<e
52 48 20 46 lttri 1<22<e1<e
53 49 51 52 mp2an 1<e
54 48 46 53 ltleii 1e
55 54 a1i φ1e
56 30 simp2d φ1<ZeZZZY
57 56 simp2d φeZ
58 43 47 45 55 57 letrd φ1Z
59 56 simp3d φZZY
60 43 45 42 58 59 letrd φ1ZY
61 flge1nn ZY1ZYZY
62 42 60 61 syl2anc φZY
63 62 nnrpd φZY+
64 63 relogcld φlogZY
65 64 43 readdcld φlogZY+1
66 65 resqcld φlogZY+12
67 logdivbnd ZYn=1ZYlognnlogZY+122
68 62 67 syl φn=1ZYlognnlogZY+122
69 20 a1i φ2
70 2pos 0<2
71 70 a1i φ0<2
72 lemuldiv2 n=1ZYlognnlogZY+1220<22n=1ZYlognnlogZY+12n=1ZYlognnlogZY+122
73 27 66 69 71 72 syl112anc φ2n=1ZYlognnlogZY+12n=1ZYlognnlogZY+122
74 68 73 mpbird φ2n=1ZYlognnlogZY+12
75 reflcl ZYZY
76 42 75 syl φZY
77 flle ZYZYZY
78 42 77 syl φZYZY
79 11 simprd φ1Y
80 1rp 1+
81 80 a1i φ1+
82 81 41 31 lediv2d φ1YZYZ1
83 79 82 mpbid φZYZ1
84 40 recnd φZ
85 84 div1d φZ1=Z
86 83 85 breqtrd φZYZ
87 76 42 40 78 86 letrd φZYZ
88 63 31 logled φZYZlogZYlogZ
89 87 88 mpbid φlogZYlogZ
90 64 32 43 89 leadd1dd φlogZY+1logZ+1
91 0red φ0
92 log1 log1=0
93 62 nnge1d φ1ZY
94 logleb 1+ZY+1ZYlog1logZY
95 80 63 94 sylancr φ1ZYlog1logZY
96 93 95 mpbid φlog1logZY
97 92 96 eqbrtrrid φ0logZY
98 64 lep1d φlogZYlogZY+1
99 91 64 65 97 98 letrd φ0logZY+1
100 91 65 34 99 90 letrd φ0logZ+1
101 65 34 99 100 le2sqd φlogZY+1logZ+1logZY+12logZ+12
102 90 101 mpbid φlogZY+12logZ+12
103 29 66 35 74 102 letrd φ2n=1ZYlognnlogZ+12
104 32 resqcld φlogZ2
105 69 32 remulcld φ2logZ
106 104 105 readdcld φlogZ2+2logZ
107 loge loge=1
108 44 rpge0d φ0Z
109 45 45 108 58 lemulge12d φZZZ
110 31 rprege0d φZ0Z
111 remsqsqrt Z0ZZZ=Z
112 110 111 syl φZZ=Z
113 109 112 breqtrd φZZ
114 47 45 40 57 113 letrd φeZ
115 epr e+
116 logleb e+Z+eZlogelogZ
117 115 31 116 sylancr φeZlogelogZ
118 114 117 mpbid φlogelogZ
119 107 118 eqbrtrrid φ1logZ
120 43 32 106 119 leadd2dd φlogZ2+2logZ+1logZ2+2logZ+logZ
121 32 recnd φlogZ
122 binom21 logZlogZ+12=logZ2+2logZ+1
123 121 122 syl φlogZ+12=logZ2+2logZ+1
124 121 sqvald φlogZ2=logZlogZ
125 df-3 3=2+1
126 125 oveq1i 3logZ=2+1logZ
127 2cnd φ2
128 1cnd φ1
129 127 128 121 adddird φ2+1logZ=2logZ+1logZ
130 126 129 eqtrid φ3logZ=2logZ+1logZ
131 121 mullidd φ1logZ=logZ
132 131 oveq2d φ2logZ+1logZ=2logZ+logZ
133 130 132 eqtr2d φ2logZ+logZ=3logZ
134 124 133 oveq12d φlogZ2+2logZ+logZ=logZlogZ+3logZ
135 121 sqcld φlogZ2
136 2cn 2
137 mulcl 2logZ2logZ
138 136 121 137 sylancr φ2logZ
139 135 138 121 addassd φlogZ2+2logZ+logZ=logZ2+2logZ+logZ
140 3cn 3
141 140 a1i φ3
142 121 141 121 adddird φlogZ+3logZ=logZlogZ+3logZ
143 134 139 142 3eqtr4rd φlogZ+3logZ=logZ2+2logZ+logZ
144 120 123 143 3brtr4d φlogZ+12logZ+3logZ
145 29 35 39 103 144 letrd φ2n=1ZYlognnlogZ+3logZ
146 29 39 7 lemul2d φ2n=1ZYlognnlogZ+3logZU2n=1ZYlognnUlogZ+3logZ
147 145 146 mpbid φU2n=1ZYlognnUlogZ+3logZ
148 7 rpred φU
149 148 adantr φn1ZYU
150 149 recnd φn1ZYU
151 25 recnd φn1ZYlogn
152 24 rpcnne0d φn1ZYnn0
153 div23 Ulognnn0Ulognn=Unlogn
154 divass Ulognnn0Ulognn=Ulognn
155 153 154 eqtr3d Ulognnn0Unlogn=Ulognn
156 150 151 152 155 syl3anc φn1ZYUnlogn=Ulognn
157 156 sumeq2dv φn=1ZYUnlogn=n=1ZYUlognn
158 148 recnd φU
159 26 recnd φn1ZYlognn
160 21 158 159 fsummulc2 φUn=1ZYlognn=n=1ZYUlognn
161 157 160 eqtr4d φn=1ZYUnlogn=Un=1ZYlognn
162 161 oveq2d φ2n=1ZYUnlogn=2Un=1ZYlognn
163 27 recnd φn=1ZYlognn
164 127 158 163 mul12d φ2Un=1ZYlognn=U2n=1ZYlognn
165 162 164 eqtrd φ2n=1ZYUnlogn=U2n=1ZYlognn
166 38 recnd φlogZ+3
167 158 166 121 mulassd φUlogZ+3logZ=UlogZ+3logZ
168 147 165 167 3brtr4d φ2n=1ZYUnlognUlogZ+3logZ