Metamath Proof Explorer


Theorem poimirlem10

Description: Lemma for poimir establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
poimirlem12.2 φTS
poimirlem11.3 φ2ndT=0
Assertion poimirlem10 φFN1f1N×1=1st1stT

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 poimirlem12.2 φTS
5 poimirlem11.3 φ2ndT=0
6 ovexd φ1NV
7 nnm1nn0 NN10
8 1 7 syl φN10
9 nn0fz0 N10N10N1
10 8 9 sylib φN10N1
11 3 10 ffvelcdmd φFN10K1N
12 elmapfn FN10K1NFN1Fn1N
13 11 12 syl φFN1Fn1N
14 1ex 1V
15 fnconstg 1V1N×1Fn1N
16 14 15 mp1i φ1N×1Fn1N
17 elrabi Tt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0T0..^K1N×f|f:1N1-1 onto1N×0N
18 17 2 eleq2s TST0..^K1N×f|f:1N1-1 onto1N×0N
19 4 18 syl φT0..^K1N×f|f:1N1-1 onto1N×0N
20 xp1st T0..^K1N×f|f:1N1-1 onto1N×0N1stT0..^K1N×f|f:1N1-1 onto1N
21 19 20 syl φ1stT0..^K1N×f|f:1N1-1 onto1N
22 xp1st 1stT0..^K1N×f|f:1N1-1 onto1N1st1stT0..^K1N
23 21 22 syl φ1st1stT0..^K1N
24 elmapfn 1st1stT0..^K1N1st1stTFn1N
25 23 24 syl φ1st1stTFn1N
26 fveq2 t=T2ndt=2ndT
27 26 breq2d t=Ty<2ndty<2ndT
28 27 ifbid t=Tify<2ndtyy+1=ify<2ndTyy+1
29 28 csbeq1d t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
30 2fveq3 t=T1st1stt=1st1stT
31 2fveq3 t=T2nd1stt=2nd1stT
32 31 imaeq1d t=T2nd1stt1j=2nd1stT1j
33 32 xpeq1d t=T2nd1stt1j×1=2nd1stT1j×1
34 31 imaeq1d t=T2nd1sttj+1N=2nd1stTj+1N
35 34 xpeq1d t=T2nd1sttj+1N×0=2nd1stTj+1N×0
36 33 35 uneq12d t=T2nd1stt1j×12nd1sttj+1N×0=2nd1stT1j×12nd1stTj+1N×0
37 30 36 oveq12d t=T1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT1j×12nd1stTj+1N×0
38 37 csbeq2dv t=Tify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
39 29 38 eqtrd t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
40 39 mpteq2dv t=Ty0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
41 40 eqeq2d t=TF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
42 41 2 elrab2 TST0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
43 42 simprbi TSF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
44 4 43 syl φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
45 breq12 y=N12ndT=0y<2ndTN1<0
46 5 45 sylan2 y=N1φy<2ndTN1<0
47 46 ancoms φy=N1y<2ndTN1<0
48 oveq1 y=N1y+1=N-1+1
49 1 nncnd φN
50 npcan1 NN-1+1=N
51 49 50 syl φN-1+1=N
52 48 51 sylan9eqr φy=N1y+1=N
53 47 52 ifbieq2d φy=N1ify<2ndTyy+1=ifN1<0yN
54 8 nn0ge0d φ0N1
55 0red φ0
56 8 nn0red φN1
57 55 56 lenltd φ0N1¬N1<0
58 54 57 mpbid φ¬N1<0
59 58 iffalsed φifN1<0yN=N
60 59 adantr φy=N1ifN1<0yN=N
61 53 60 eqtrd φy=N1ify<2ndTyy+1=N
62 61 csbeq1d φy=N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=N/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
63 oveq2 j=N1j=1N
64 63 imaeq2d j=N2nd1stT1j=2nd1stT1N
65 xp2nd 1stT0..^K1N×f|f:1N1-1 onto1N2nd1stTf|f:1N1-1 onto1N
66 21 65 syl φ2nd1stTf|f:1N1-1 onto1N
67 fvex 2nd1stTV
68 f1oeq1 f=2nd1stTf:1N1-1 onto1N2nd1stT:1N1-1 onto1N
69 67 68 elab 2nd1stTf|f:1N1-1 onto1N2nd1stT:1N1-1 onto1N
70 66 69 sylib φ2nd1stT:1N1-1 onto1N
71 f1ofo 2nd1stT:1N1-1 onto1N2nd1stT:1Nonto1N
72 foima 2nd1stT:1Nonto1N2nd1stT1N=1N
73 70 71 72 3syl φ2nd1stT1N=1N
74 64 73 sylan9eqr φj=N2nd1stT1j=1N
75 74 xpeq1d φj=N2nd1stT1j×1=1N×1
76 oveq1 j=Nj+1=N+1
77 76 oveq1d j=Nj+1N=N+1N
78 1 nnred φN
79 78 ltp1d φN<N+1
80 1 nnzd φN
81 80 peano2zd φN+1
82 fzn N+1NN<N+1N+1N=
83 81 80 82 syl2anc φN<N+1N+1N=
84 79 83 mpbid φN+1N=
85 77 84 sylan9eqr φj=Nj+1N=
86 85 imaeq2d φj=N2nd1stTj+1N=2nd1stT
87 86 xpeq1d φj=N2nd1stTj+1N×0=2nd1stT×0
88 ima0 2nd1stT=
89 88 xpeq1i 2nd1stT×0=×0
90 0xp ×0=
91 89 90 eqtri 2nd1stT×0=
92 87 91 eqtrdi φj=N2nd1stTj+1N×0=
93 75 92 uneq12d φj=N2nd1stT1j×12nd1stTj+1N×0=1N×1
94 un0 1N×1=1N×1
95 93 94 eqtrdi φj=N2nd1stT1j×12nd1stTj+1N×0=1N×1
96 95 oveq2d φj=N1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×1
97 1 96 csbied φN/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×1
98 97 adantr φy=N1N/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×1
99 62 98 eqtrd φy=N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×1
100 ovexd φ1st1stT+f1N×1V
101 44 99 10 100 fvmptd φFN1=1st1stT+f1N×1
102 101 fveq1d φFN1n=1st1stT+f1N×1n
103 102 adantr φn1NFN1n=1st1stT+f1N×1n
104 inidm 1N1N=1N
105 eqidd φn1N1st1stTn=1st1stTn
106 14 fvconst2 n1N1N×1n=1
107 106 adantl φn1N1N×1n=1
108 25 16 6 6 104 105 107 ofval φn1N1st1stT+f1N×1n=1st1stTn+1
109 103 108 eqtrd φn1NFN1n=1st1stTn+1
110 elmapi 1st1stT0..^K1N1st1stT:1N0..^K
111 23 110 syl φ1st1stT:1N0..^K
112 111 ffvelcdmda φn1N1st1stTn0..^K
113 elfzonn0 1st1stTn0..^K1st1stTn0
114 112 113 syl φn1N1st1stTn0
115 114 nn0cnd φn1N1st1stTn
116 pncan1 1st1stTn1st1stTn+1-1=1st1stTn
117 115 116 syl φn1N1st1stTn+1-1=1st1stTn
118 6 13 16 25 109 107 117 offveq φFN1f1N×1=1st1stT