Metamath Proof Explorer


Theorem rpnnen1lem5

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T=n|nk<x
rpnnen1lem.2 F=xksupT<k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem5 xsupranFx<=x

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T=n|nk<x
2 rpnnen1lem.2 F=xksupT<k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 1 2 3 4 rpnnen1lem3 xnranFxnx
6 1 2 3 4 rpnnen1lem1 xFx
7 4 3 elmap FxFx:
8 6 7 sylib xFx:
9 frn Fx:ranFx
10 qssre
11 9 10 sstrdi Fx:ranFx
12 8 11 syl xranFx
13 1nn 1
14 13 ne0ii
15 fdm Fx:domFx=
16 15 neeq1d Fx:domFx
17 14 16 mpbiri Fx:domFx
18 dm0rn0 domFx=ranFx=
19 18 necon3bii domFxranFx
20 17 19 sylib Fx:ranFx
21 8 20 syl xranFx
22 breq2 y=xnynx
23 22 ralbidv y=xnranFxnynranFxnx
24 23 rspcev xnranFxnxynranFxny
25 5 24 mpdan xynranFxny
26 id xx
27 suprleub ranFxranFxynranFxnyxsupranFx<xnranFxnx
28 12 21 25 26 27 syl31anc xsupranFx<xnranFxnx
29 5 28 mpbird xsupranFx<x
30 1 2 3 4 rpnnen1lem4 xsupranFx<
31 resubcl xsupranFx<xsupranFx<
32 30 31 mpdan xxsupranFx<
33 32 adantr xsupranFx<<xxsupranFx<
34 posdif supranFx<xsupranFx<<x0<xsupranFx<
35 30 34 mpancom xsupranFx<<x0<xsupranFx<
36 35 biimpa xsupranFx<<x0<xsupranFx<
37 36 gt0ne0d xsupranFx<<xxsupranFx<0
38 33 37 rereccld xsupranFx<<x1xsupranFx<
39 arch 1xsupranFx<k1xsupranFx<<k
40 38 39 syl xsupranFx<<xk1xsupranFx<<k
41 40 ex xsupranFx<<xk1xsupranFx<<k
42 1 2 rpnnen1lem2 xksupT<
43 42 zred xksupT<
44 43 3adant3 xk1xsupranFx<<ksupT<
45 44 ltp1d xk1xsupranFx<<ksupT<<supT<+1
46 33 36 jca xsupranFx<<xxsupranFx<0<xsupranFx<
47 nnre kk
48 nngt0 k0<k
49 47 48 jca kk0<k
50 ltrec1 xsupranFx<0<xsupranFx<k0<k1xsupranFx<<k1k<xsupranFx<
51 46 49 50 syl2an xsupranFx<<xk1xsupranFx<<k1k<xsupranFx<
52 30 ad2antrr xsupranFx<<xksupranFx<
53 nnrecre k1k
54 53 adantl xsupranFx<<xk1k
55 simpll xsupranFx<<xkx
56 52 54 55 ltaddsub2d xsupranFx<<xksupranFx<+1k<x1k<xsupranFx<
57 12 adantr xkranFx
58 ffn Fx:FxFn
59 8 58 syl xFxFn
60 fnfvelrn FxFnkFxkranFx
61 59 60 sylan xkFxkranFx
62 57 61 sseldd xkFxk
63 30 adantr xksupranFx<
64 53 adantl xk1k
65 12 21 25 3jca xranFxranFxynranFxny
66 65 adantr xkranFxranFxynranFxny
67 suprub ranFxranFxynranFxnyFxkranFxFxksupranFx<
68 66 61 67 syl2anc xkFxksupranFx<
69 62 63 64 68 leadd1dd xkFxk+1ksupranFx<+1k
70 62 64 readdcld xkFxk+1k
71 readdcl supranFx<1ksupranFx<+1k
72 30 53 71 syl2an xksupranFx<+1k
73 simpl xkx
74 lelttr Fxk+1ksupranFx<+1kxFxk+1ksupranFx<+1ksupranFx<+1k<xFxk+1k<x
75 74 expd Fxk+1ksupranFx<+1kxFxk+1ksupranFx<+1ksupranFx<+1k<xFxk+1k<x
76 70 72 73 75 syl3anc xkFxk+1ksupranFx<+1ksupranFx<+1k<xFxk+1k<x
77 69 76 mpd xksupranFx<+1k<xFxk+1k<x
78 77 adantlr xsupranFx<<xksupranFx<+1k<xFxk+1k<x
79 56 78 sylbird xsupranFx<<xk1k<xsupranFx<Fxk+1k<x
80 51 79 sylbid xsupranFx<<xk1xsupranFx<<kFxk+1k<x
81 42 peano2zd xksupT<+1
82 oveq1 n=supT<+1nk=supT<+1k
83 82 breq1d n=supT<+1nk<xsupT<+1k<x
84 83 1 elrab2 supT<+1TsupT<+1supT<+1k<x
85 84 biimpri supT<+1supT<+1k<xsupT<+1T
86 81 85 sylan xksupT<+1k<xsupT<+1T
87 ssrab2 n|nk<x
88 1 87 eqsstri T
89 zssre
90 88 89 sstri T
91 90 a1i xkT
92 remulcl kxkx
93 92 ancoms xkkx
94 47 93 sylan2 xkkx
95 btwnz kxnn<kxnkx<n
96 95 simpld kxnn<kx
97 94 96 syl xknn<kx
98 zre nn
99 98 adantl xknn
100 simpll xknx
101 49 ad2antlr xknk0<k
102 ltdivmul nxk0<knk<xn<kx
103 99 100 101 102 syl3anc xknnk<xn<kx
104 103 rexbidva xknnk<xnn<kx
105 97 104 mpbird xknnk<x
106 rabn0 n|nk<xnnk<x
107 105 106 sylibr xkn|nk<x
108 1 neeq1i Tn|nk<x
109 107 108 sylibr xkT
110 1 reqabi nTnnk<x
111 47 ad2antlr xknk
112 111 100 92 syl2anc xknkx
113 ltle nkxn<kxnkx
114 99 112 113 syl2anc xknn<kxnkx
115 103 114 sylbid xknnk<xnkx
116 115 impr xknnk<xnkx
117 110 116 sylan2b xknTnkx
118 117 ralrimiva xknTnkx
119 breq2 y=kxnynkx
120 119 ralbidv y=kxnTnynTnkx
121 120 rspcev kxnTnkxynTny
122 94 118 121 syl2anc xkynTny
123 91 109 122 3jca xkTTynTny
124 suprub TTynTnysupT<+1TsupT<+1supT<
125 123 124 sylan xksupT<+1TsupT<+1supT<
126 86 125 syldan xksupT<+1k<xsupT<+1supT<
127 126 ex xksupT<+1k<xsupT<+1supT<
128 42 zcnd xksupT<
129 1cnd xk1
130 nncn kk
131 nnne0 kk0
132 130 131 jca kkk0
133 132 adantl xkkk0
134 divdir supT<1kk0supT<+1k=supT<k+1k
135 128 129 133 134 syl3anc xksupT<+1k=supT<k+1k
136 3 mptex ksupT<kV
137 2 fvmpt2 xksupT<kVFx=ksupT<k
138 136 137 mpan2 xFx=ksupT<k
139 138 fveq1d xFxk=ksupT<kk
140 ovex supT<kV
141 eqid ksupT<k=ksupT<k
142 141 fvmpt2 ksupT<kVksupT<kk=supT<k
143 140 142 mpan2 kksupT<kk=supT<k
144 139 143 sylan9eq xkFxk=supT<k
145 144 oveq1d xkFxk+1k=supT<k+1k
146 135 145 eqtr4d xksupT<+1k=Fxk+1k
147 146 breq1d xksupT<+1k<xFxk+1k<x
148 81 zred xksupT<+1
149 148 43 lenltd xksupT<+1supT<¬supT<<supT<+1
150 127 147 149 3imtr3d xkFxk+1k<x¬supT<<supT<+1
151 150 adantlr xsupranFx<<xkFxk+1k<x¬supT<<supT<+1
152 80 151 syld xsupranFx<<xk1xsupranFx<<k¬supT<<supT<+1
153 152 exp31 xsupranFx<<xk1xsupranFx<<k¬supT<<supT<+1
154 153 com4l supranFx<<xk1xsupranFx<<kx¬supT<<supT<+1
155 154 com14 xk1xsupranFx<<ksupranFx<<x¬supT<<supT<+1
156 155 3imp xk1xsupranFx<<ksupranFx<<x¬supT<<supT<+1
157 45 156 mt2d xk1xsupranFx<<k¬supranFx<<x
158 157 rexlimdv3a xk1xsupranFx<<k¬supranFx<<x
159 41 158 syld xsupranFx<<x¬supranFx<<x
160 159 pm2.01d x¬supranFx<<x
161 eqlelt supranFx<xsupranFx<=xsupranFx<x¬supranFx<<x
162 30 161 mpancom xsupranFx<=xsupranFx<x¬supranFx<<x
163 29 160 162 mpbir2and xsupranFx<=x