Metamath Proof Explorer


Theorem rrx2linest

Description: The line passing through the two different points X and Y in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses rrx2line.i I=12
rrx2line.e E=msup
rrx2line.b P=I
rrx2line.l L=LineME
rrx2linest.a A=Y1X1
rrx2linest.b B=Y2X2
rrx2linest.c C=X2Y1X1Y2
Assertion rrx2linest XPYPXYXLY=pP|Ap2=Bp1+C

Proof

Step Hyp Ref Expression
1 rrx2line.i I=12
2 rrx2line.e E=msup
3 rrx2line.b P=I
4 rrx2line.l L=LineME
5 rrx2linest.a A=Y1X1
6 rrx2linest.b B=Y2X2
7 rrx2linest.c C=X2Y1X1Y2
8 simpl1 XPYPXYX1=Y1XP
9 simpl2 XPYPXYX1=Y1YP
10 simpr XPYPXYX1=Y1X1=Y1
11 simpr XPYPX1=Y1X1=Y1
12 11 anim1i XPYPX1=Y1X2=Y2X1=Y1X2=Y2
13 1 raleqi iIXi=Yii12Xi=Yi
14 1ex 1V
15 2ex 2V
16 fveq2 i=1Xi=X1
17 fveq2 i=1Yi=Y1
18 16 17 eqeq12d i=1Xi=YiX1=Y1
19 fveq2 i=2Xi=X2
20 fveq2 i=2Yi=Y2
21 19 20 eqeq12d i=2Xi=YiX2=Y2
22 14 15 18 21 ralpr i12Xi=YiX1=Y1X2=Y2
23 13 22 bitri iIXi=YiX1=Y1X2=Y2
24 12 23 sylibr XPYPX1=Y1X2=Y2iIXi=Yi
25 elmapfn XIXFnI
26 25 3 eleq2s XPXFnI
27 elmapfn YIYFnI
28 27 3 eleq2s YPYFnI
29 26 28 anim12i XPYPXFnIYFnI
30 29 ad2antrr XPYPX1=Y1X2=Y2XFnIYFnI
31 eqfnfv XFnIYFnIX=YiIXi=Yi
32 30 31 syl XPYPX1=Y1X2=Y2X=YiIXi=Yi
33 24 32 mpbird XPYPX1=Y1X2=Y2X=Y
34 33 ex XPYPX1=Y1X2=Y2X=Y
35 34 necon3d XPYPX1=Y1XYX2Y2
36 35 ex XPYPX1=Y1XYX2Y2
37 36 com23 XPYPXYX1=Y1X2Y2
38 37 3impia XPYPXYX1=Y1X2Y2
39 38 imp XPYPXYX1=Y1X2Y2
40 1 2 3 4 rrx2vlinest XPYPX1=Y1X2Y2XLY=pP|p1=X1
41 8 9 10 39 40 syl112anc XPYPXYX1=Y1XLY=pP|p1=X1
42 ancom XPYPXYX1=Y1X1=Y1XPYPXY
43 simplr X1=Y1XPYPXYpPXPYPXY
44 simpr X1=Y1XPYPXYpPpP
45 simpll X1=Y1XPYPXYpPX1=Y1
46 5 oveq1i Ap2=Y1X1p2
47 46 a1i XPYPXYpPX1=Y1Ap2=Y1X1p2
48 oveq2 X1=Y1Y1X1=Y1Y1
49 48 adantl XPYPXYpPX1=Y1Y1X1=Y1Y1
50 1 3 rrx2pxel YPY1
51 50 recnd YPY1
52 51 3ad2ant2 XPYPXYY1
53 52 ad2antrr XPYPXYpPX1=Y1Y1
54 53 subidd XPYPXYpPX1=Y1Y1Y1=0
55 49 54 eqtrd XPYPXYpPX1=Y1Y1X1=0
56 55 oveq1d XPYPXYpPX1=Y1Y1X1p2=0p2
57 1 3 rrx2pyel pPp2
58 57 recnd pPp2
59 58 ad2antlr XPYPXYpPX1=Y1p2
60 59 mul02d XPYPXYpPX1=Y10p2=0
61 47 56 60 3eqtrd XPYPXYpPX1=Y1Ap2=0
62 6 oveq1i Bp1=Y2X2p1
63 62 a1i XPYPXYpPX1=Y1Bp1=Y2X2p1
64 oveq1 X1=Y1X1Y2=Y1Y2
65 64 oveq2d X1=Y1X2Y1X1Y2=X2Y1Y1Y2
66 7 65 eqtrid X1=Y1C=X2Y1Y1Y2
67 66 adantl XPYPXYpPX1=Y1C=X2Y1Y1Y2
68 63 67 oveq12d XPYPXYpPX1=Y1Bp1+C=Y2X2p1+X2Y1-Y1Y2
69 61 68 eqeq12d XPYPXYpPX1=Y1Ap2=Bp1+C0=Y2X2p1+X2Y1-Y1Y2
70 43 44 45 69 syl21anc X1=Y1XPYPXYpPAp2=Bp1+C0=Y2X2p1+X2Y1-Y1Y2
71 1 3 rrx2pyel YPY2
72 71 recnd YPY2
73 72 3ad2ant2 XPYPXYY2
74 52 73 mulcomd XPYPXYY1Y2=Y2Y1
75 74 oveq2d XPYPXYX2Y1Y1Y2=X2Y1Y2Y1
76 1 3 rrx2pyel XPX2
77 76 recnd XPX2
78 77 3ad2ant1 XPYPXYX2
79 78 73 52 subdird XPYPXYX2Y2Y1=X2Y1Y2Y1
80 75 79 eqtr4d XPYPXYX2Y1Y1Y2=X2Y2Y1
81 80 ad2antlr X1=Y1XPYPXYpPX2Y1Y1Y2=X2Y2Y1
82 81 oveq2d X1=Y1XPYPXYpPY2X2p1+X2Y1-Y1Y2=Y2X2p1+X2Y2Y1
83 82 eqeq2d X1=Y1XPYPXYpP0=Y2X2p1+X2Y1-Y1Y20=Y2X2p1+X2Y2Y1
84 eqcom 0=Y2X2p1+X2Y2Y1Y2X2p1+X2Y2Y1=0
85 84 a1i X1=Y1XPYPXYpP0=Y2X2p1+X2Y2Y1Y2X2p1+X2Y2Y1=0
86 73 ad2antlr X1=Y1XPYPXYpPY2
87 78 ad2antlr X1=Y1XPYPXYpPX2
88 86 87 subcld X1=Y1XPYPXYpPY2X2
89 1 3 rrx2pxel pPp1
90 89 recnd pPp1
91 90 adantl X1=Y1XPYPXYpPp1
92 88 91 mulcld X1=Y1XPYPXYpPY2X2p1
93 87 86 subcld X1=Y1XPYPXYpPX2Y2
94 52 ad2antlr X1=Y1XPYPXYpPY1
95 93 94 mulcld X1=Y1XPYPXYpPX2Y2Y1
96 addeq0 Y2X2p1X2Y2Y1Y2X2p1+X2Y2Y1=0Y2X2p1=X2Y2Y1
97 92 95 96 syl2anc X1=Y1XPYPXYpPY2X2p1+X2Y2Y1=0Y2X2p1=X2Y2Y1
98 93 94 mulneg1d X1=Y1XPYPXYpPX2Y2Y1=X2Y2Y1
99 87 86 negsubdi2d X1=Y1XPYPXYpPX2Y2=Y2X2
100 99 oveq1d X1=Y1XPYPXYpPX2Y2Y1=Y2X2Y1
101 98 100 eqtr3d X1=Y1XPYPXYpPX2Y2Y1=Y2X2Y1
102 101 eqeq2d X1=Y1XPYPXYpPY2X2p1=X2Y2Y1Y2X2p1=Y2X2Y1
103 necom X2Y2Y2X2
104 39 42 103 3imtr3i X1=Y1XPYPXYY2X2
105 104 adantr X1=Y1XPYPXYpPY2X2
106 86 87 105 subne0d X1=Y1XPYPXYpPY2X20
107 91 94 88 106 mulcand X1=Y1XPYPXYpPY2X2p1=Y2X2Y1p1=Y1
108 102 107 bitrd X1=Y1XPYPXYpPY2X2p1=X2Y2Y1p1=Y1
109 85 97 108 3bitrd X1=Y1XPYPXYpP0=Y2X2p1+X2Y2Y1p1=Y1
110 83 109 bitrd X1=Y1XPYPXYpP0=Y2X2p1+X2Y1-Y1Y2p1=Y1
111 simpl X1=Y1XPYPXYX1=Y1
112 111 eqcomd X1=Y1XPYPXYY1=X1
113 112 adantr X1=Y1XPYPXYpPY1=X1
114 113 eqeq2d X1=Y1XPYPXYpPp1=Y1p1=X1
115 70 110 114 3bitrrd X1=Y1XPYPXYpPp1=X1Ap2=Bp1+C
116 115 rabbidva X1=Y1XPYPXYpP|p1=X1=pP|Ap2=Bp1+C
117 42 116 sylbi XPYPXYX1=Y1pP|p1=X1=pP|Ap2=Bp1+C
118 41 117 eqtrd XPYPXYX1=Y1XLY=pP|Ap2=Bp1+C
119 1 2 3 4 rrx2line XPYPXYXLY=pP|tp1=1tX1+tY1p2=1tX2+tY2
120 119 adantr XPYPXY¬X1=Y1XLY=pP|tp1=1tX1+tY1p2=1tX2+tY2
121 df-ne X1Y1¬X1=Y1
122 89 ad2antlr XPYPXYpPX1Y1p1
123 1 3 rrx2pxel XPX1
124 123 3ad2ant1 XPYPXYX1
125 124 ad2antrr XPYPXYpPX1Y1X1
126 50 3ad2ant2 XPYPXYY1
127 126 ad2antrr XPYPXYpPX1Y1Y1
128 simpr XPYPXYpPX1Y1X1Y1
129 57 ad2antlr XPYPXYpPX1Y1p2
130 76 3ad2ant1 XPYPXYX2
131 130 ad2antrr XPYPXYpPX1Y1X2
132 71 3ad2ant2 XPYPXYY2
133 132 ad2antrr XPYPXYpPX1Y1Y2
134 122 125 127 128 129 131 133 affinecomb2 XPYPXYpPX1Y1tp1=1tX1+tY1p2=1tX2+tY2Y1X1p2=Y2X2p1+X2Y1-X1Y2
135 5 eqcomi Y1X1=A
136 135 oveq1i Y1X1p2=Ap2
137 6 eqcomi Y2X2=B
138 137 oveq1i Y2X2p1=Bp1
139 7 eqcomi X2Y1X1Y2=C
140 138 139 oveq12i Y2X2p1+X2Y1-X1Y2=Bp1+C
141 136 140 eqeq12i Y1X1p2=Y2X2p1+X2Y1-X1Y2Ap2=Bp1+C
142 134 141 bitrdi XPYPXYpPX1Y1tp1=1tX1+tY1p2=1tX2+tY2Ap2=Bp1+C
143 142 expcom X1Y1XPYPXYpPtp1=1tX1+tY1p2=1tX2+tY2Ap2=Bp1+C
144 121 143 sylbir ¬X1=Y1XPYPXYpPtp1=1tX1+tY1p2=1tX2+tY2Ap2=Bp1+C
145 144 expd ¬X1=Y1XPYPXYpPtp1=1tX1+tY1p2=1tX2+tY2Ap2=Bp1+C
146 145 impcom XPYPXY¬X1=Y1pPtp1=1tX1+tY1p2=1tX2+tY2Ap2=Bp1+C
147 146 imp XPYPXY¬X1=Y1pPtp1=1tX1+tY1p2=1tX2+tY2Ap2=Bp1+C
148 147 rabbidva XPYPXY¬X1=Y1pP|tp1=1tX1+tY1p2=1tX2+tY2=pP|Ap2=Bp1+C
149 120 148 eqtrd XPYPXY¬X1=Y1XLY=pP|Ap2=Bp1+C
150 118 149 pm2.61dan XPYPXYXLY=pP|Ap2=Bp1+C