Metamath Proof Explorer


Theorem smflimlem3

Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smflimlem3.z Z=M
smflimlem3.s φSSAlg
smflimlem3.m φmZFmSMblFnS
smflimlem3.d D=xnZmndomFm|mZFmxdom
smflimlem3.a φA
smflimlem3.p P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
smflimlem3.h H=mZ,kCmPk
smflimlem3.i I=knZmnmHk
smflimlem3.c φyranPCyy
smflimlem3.x φXDI
smflimlem3.k φK
smflimlem3.y φY+
smflimlem3.l φ1K<Y
Assertion smflimlem3 φmZimXdomFiFiX<A+Y

Proof

Step Hyp Ref Expression
1 smflimlem3.z Z=M
2 smflimlem3.s φSSAlg
3 smflimlem3.m φmZFmSMblFnS
4 smflimlem3.d D=xnZmndomFm|mZFmxdom
5 smflimlem3.a φA
6 smflimlem3.p P=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
7 smflimlem3.h H=mZ,kCmPk
8 smflimlem3.i I=knZmnmHk
9 smflimlem3.c φyranPCyy
10 smflimlem3.x φXDI
11 smflimlem3.k φK
12 smflimlem3.y φY+
13 smflimlem3.l φ1K<Y
14 ssrab2 xnZmndomFm|mZFmxdomnZmndomFm
15 4 14 eqsstri DnZmndomFm
16 inss1 DID
17 16 10 sselid φXD
18 15 17 sselid φXnZmndomFm
19 fveq2 i=mFi=Fm
20 19 dmeqd i=mdomFi=domFm
21 eqcom i=mm=i
22 21 imbi1i i=mdomFi=domFmm=idomFi=domFm
23 eqcom domFi=domFmdomFm=domFi
24 23 imbi2i m=idomFi=domFmm=idomFm=domFi
25 22 24 bitri i=mdomFi=domFmm=idomFm=domFi
26 20 25 mpbi m=idomFm=domFi
27 26 cbviinv mndomFm=indomFi
28 27 a1i nZmndomFm=indomFi
29 28 iuneq2i nZmndomFm=nZindomFi
30 fveq2 n=mn=m
31 30 iineq1d n=mindomFi=imdomFi
32 31 cbviunv nZindomFi=mZimdomFi
33 29 32 eqtri nZmndomFm=mZimdomFi
34 18 33 eleqtrdi φXmZimdomFi
35 eqid mZimdomFi=mZimdomFi
36 1 35 allbutfi XmZimdomFimZimXdomFi
37 36 biimpi XmZimdomFimZimXdomFi
38 34 37 syl φmZimXdomFi
39 10 elin2d φXI
40 oveq1 m=imHk=iHk
41 40 cbviinv mnmHk=iniHk
42 41 a1i nZmnmHk=iniHk
43 42 iuneq2i nZmnmHk=nZiniHk
44 30 iineq1d n=miniHk=imiHk
45 44 cbviunv nZiniHk=mZimiHk
46 43 45 eqtri nZmnmHk=mZimiHk
47 46 a1i knZmnmHk=mZimiHk
48 47 iineq2i knZmnmHk=kmZimiHk
49 8 48 eqtri I=kmZimiHk
50 39 49 eleqtrdi φXkmZimiHk
51 oveq2 k=KiHk=iHK
52 51 adantr k=KimiHk=iHK
53 52 iineq2dv k=KimiHk=imiHK
54 53 iuneq2d k=KmZimiHk=mZimiHK
55 54 eleq2d k=KXmZimiHkXmZimiHK
56 50 11 55 eliind φXmZimiHK
57 eqid mZimiHK=mZimiHK
58 1 57 allbutfi XmZimiHKmZimXiHK
59 56 58 sylib φmZimXiHK
60 38 59 jca φmZimXdomFimZimXiHK
61 1 rexanuz2 mZimXdomFiXiHKmZimXdomFimZimXiHK
62 60 61 sylibr φmZimXdomFiXiHK
63 simpll φmZimφ
64 simpr φmZmZ
65 1 uztrn2 mZimiZ
66 64 65 sylan φmZimiZ
67 simprl φiZXdomFiXiHKXdomFi
68 simp3 φiZXiHKXiHK
69 7 a1i φiZH=mZ,kCmPk
70 oveq12 m=ik=KmPk=iPK
71 70 fveq2d m=ik=KCmPk=CiPK
72 71 adantl φiZm=ik=KCmPk=CiPK
73 simpr φiZiZ
74 11 adantr φiZK
75 fvexd φiZCiPKV
76 69 72 73 74 75 ovmpod φiZiHK=CiPK
77 76 3adant3 φiZXiHKiHK=CiPK
78 68 77 eleqtrd φiZXiHKXCiPK
79 78 3expa φiZXiHKXCiPK
80 79 adantrl φiZXdomFiXiHKXCiPK
81 80 67 elind φiZXdomFiXiHKXCiPKdomFi
82 eqid sS|xdomFm|Fmx<A+1k=sdomFm=sS|xdomFm|Fmx<A+1k=sdomFm
83 82 2 rabexd φsS|xdomFm|Fmx<A+1k=sdomFmV
84 83 ralrimivw φksS|xdomFm|Fmx<A+1k=sdomFmV
85 84 a1d φmZksS|xdomFm|Fmx<A+1k=sdomFmV
86 85 imp φmZksS|xdomFm|Fmx<A+1k=sdomFmV
87 86 ralrimiva φmZksS|xdomFm|Fmx<A+1k=sdomFmV
88 6 fnmpo mZksS|xdomFm|Fmx<A+1k=sdomFmVPFnZ×
89 87 88 syl φPFnZ×
90 89 adantr φiZPFnZ×
91 fnovrn PFnZ×iZKiPKranP
92 90 73 74 91 syl3anc φiZiPKranP
93 ovex iPKV
94 eleq1 y=iPKyranPiPKranP
95 94 anbi2d y=iPKφyranPφiPKranP
96 fveq2 y=iPKCy=CiPK
97 id y=iPKy=iPK
98 96 97 eleq12d y=iPKCyyCiPKiPK
99 95 98 imbi12d y=iPKφyranPCyyφiPKranPCiPKiPK
100 93 99 9 vtocl φiPKranPCiPKiPK
101 92 100 syldan φiZCiPKiPK
102 6 a1i φiZP=mZ,ksS|xdomFm|Fmx<A+1k=sdomFm
103 26 adantr m=ik=KdomFm=domFi
104 19 fveq1d i=mFix=Fmx
105 21 imbi1i i=mFix=Fmxm=iFix=Fmx
106 eqcom Fix=FmxFmx=Fix
107 106 imbi2i m=iFix=Fmxm=iFmx=Fix
108 105 107 bitri i=mFix=Fmxm=iFmx=Fix
109 104 108 mpbi m=iFmx=Fix
110 109 adantr m=ik=KFmx=Fix
111 oveq2 k=K1k=1K
112 111 oveq2d k=KA+1k=A+1K
113 112 adantl m=ik=KA+1k=A+1K
114 110 113 breq12d m=ik=KFmx<A+1kFix<A+1K
115 103 114 rabeqbidv m=ik=KxdomFm|Fmx<A+1k=xdomFi|Fix<A+1K
116 26 ineq2d m=isdomFm=sdomFi
117 116 adantr m=ik=KsdomFm=sdomFi
118 115 117 eqeq12d m=ik=KxdomFm|Fmx<A+1k=sdomFmxdomFi|Fix<A+1K=sdomFi
119 118 rabbidv m=ik=KsS|xdomFm|Fmx<A+1k=sdomFm=sS|xdomFi|Fix<A+1K=sdomFi
120 119 adantl φiZm=ik=KsS|xdomFm|Fmx<A+1k=sdomFm=sS|xdomFi|Fix<A+1K=sdomFi
121 eqid sS|xdomFi|Fix<A+1K=sdomFi=sS|xdomFi|Fix<A+1K=sdomFi
122 121 2 rabexd φsS|xdomFi|Fix<A+1K=sdomFiV
123 122 adantr φiZsS|xdomFi|Fix<A+1K=sdomFiV
124 102 120 73 74 123 ovmpod φiZiPK=sS|xdomFi|Fix<A+1K=sdomFi
125 101 124 eleqtrd φiZCiPKsS|xdomFi|Fix<A+1K=sdomFi
126 ineq1 s=CiPKsdomFi=CiPKdomFi
127 126 eqeq2d s=CiPKxdomFi|Fix<A+1K=sdomFixdomFi|Fix<A+1K=CiPKdomFi
128 127 elrab CiPKsS|xdomFi|Fix<A+1K=sdomFiCiPKSxdomFi|Fix<A+1K=CiPKdomFi
129 125 128 sylib φiZCiPKSxdomFi|Fix<A+1K=CiPKdomFi
130 129 simprd φiZxdomFi|Fix<A+1K=CiPKdomFi
131 130 eqcomd φiZCiPKdomFi=xdomFi|Fix<A+1K
132 131 adantr φiZXdomFiXiHKCiPKdomFi=xdomFi|Fix<A+1K
133 81 132 eleqtrd φiZXdomFiXiHKXxdomFi|Fix<A+1K
134 fveq2 x=XFix=FiX
135 eqidd x=XA+1K=A+1K
136 134 135 breq12d x=XFix<A+1KFiX<A+1K
137 136 elrab XxdomFi|Fix<A+1KXdomFiFiX<A+1K
138 133 137 sylib φiZXdomFiXiHKXdomFiFiX<A+1K
139 138 simprd φiZXdomFiXiHKFiX<A+1K
140 67 139 jca φiZXdomFiXiHKXdomFiFiX<A+1K
141 140 ex φiZXdomFiXiHKXdomFiFiX<A+1K
142 63 66 141 syl2anc φmZimXdomFiXiHKXdomFiFiX<A+1K
143 142 ralimdva φmZimXdomFiXiHKimXdomFiFiX<A+1K
144 143 reximdva φmZimXdomFiXiHKmZimXdomFiFiX<A+1K
145 62 144 mpd φmZimXdomFiFiX<A+1K
146 simprl φiZXdomFiFiX<A+1KXdomFi
147 eleq1 m=imZiZ
148 147 anbi2d m=iφmZφiZ
149 fveq2 m=iFm=Fi
150 149 26 feq12d m=iFm:domFmFi:domFi
151 148 150 imbi12d m=iφmZFm:domFmφiZFi:domFi
152 2 adantr φmZSSAlg
153 eqid domFm=domFm
154 152 3 153 smff φmZFm:domFm
155 151 154 chvarvv φiZFi:domFi
156 155 adantr φiZXdomFiFi:domFi
157 simpr φiZXdomFiXdomFi
158 156 157 ffvelcdmd φiZXdomFiFiX
159 158 adantrr φiZXdomFiFiX<A+1KFiX
160 11 nnrecred φ1K
161 5 160 readdcld φA+1K
162 161 ad2antrr φiZXdomFiFiX<A+1KA+1K
163 12 rpred φY
164 5 163 readdcld φA+Y
165 164 ad2antrr φiZXdomFiFiX<A+1KA+Y
166 simprr φiZXdomFiFiX<A+1KFiX<A+1K
167 160 163 5 13 ltadd2dd φA+1K<A+Y
168 167 ad2antrr φiZXdomFiFiX<A+1KA+1K<A+Y
169 159 162 165 166 168 lttrd φiZXdomFiFiX<A+1KFiX<A+Y
170 146 169 jca φiZXdomFiFiX<A+1KXdomFiFiX<A+Y
171 170 ex φiZXdomFiFiX<A+1KXdomFiFiX<A+Y
172 63 66 171 syl2anc φmZimXdomFiFiX<A+1KXdomFiFiX<A+Y
173 172 ralimdva φmZimXdomFiFiX<A+1KimXdomFiFiX<A+Y
174 173 reximdva φmZimXdomFiFiX<A+1KmZimXdomFiFiX<A+Y
175 145 174 mpd φmZimXdomFiFiX<A+Y