Metamath Proof Explorer


Theorem sqreulem

Description: Lemma for sqreu : write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Hypothesis sqrteulem.1 B=AA+AA+A
Assertion sqreulem AA+A0B2=A0BiB+

Proof

Step Hyp Ref Expression
1 sqrteulem.1 B=AA+AA+A
2 1 oveq1i B2=AA+AA+A2
3 abscl AA
4 absge0 A0A
5 resqrtcl A0AA
6 3 4 5 syl2anc AA
7 6 recnd AA
8 7 adantr AA+A0A
9 3 recnd AA
10 addcl AAA+A
11 9 10 mpancom AA+A
12 11 adantr AA+A0A+A
13 abscl A+AA+A
14 11 13 syl AA+A
15 14 recnd AA+A
16 15 adantr AA+A0A+A
17 11 abs00ad AA+A=0A+A=0
18 17 necon3bid AA+A0A+A0
19 18 biimpar AA+A0A+A0
20 12 16 19 divcld AA+A0A+AA+A
21 8 20 sqmuld AA+A0AA+AA+A2=A2A+AA+A2
22 2 21 eqtrid AA+A0B2=A2A+AA+A2
23 3 adantr AA+A0A
24 4 adantr AA+A00A
25 resqrtth A0AA2=A
26 23 24 25 syl2anc AA+A0A2=A
27 12 16 19 sqdivd AA+A0A+AA+A2=A+A2A+A2
28 absvalsq AA2=AA
29 2cn 2
30 mulass 2AA2AA=2AA
31 29 30 mp3an1 AA2AA=2AA
32 9 31 mpancom A2AA=2AA
33 mulcl 2A2A
34 29 9 33 sylancr A2A
35 mulcom 2AA2AA=A2A
36 34 35 mpancom A2AA=A2A
37 32 36 eqtr3d A2AA=A2A
38 28 37 oveq12d AA2+2AA=AA+A2A
39 cjcl AA
40 adddi AA2AAA+2A=AA+A2A
41 39 34 40 mpd3an23 AAA+2A=AA+A2A
42 38 41 eqtr4d AA2+2AA=AA+2A
43 sqval AA2=AA
44 42 43 oveq12d AA2+2AA+A2=AA+2A+AA
45 binom2 AAA+A2=A2+2AA+A2
46 9 45 mpancom AA+A2=A2+2AA+A2
47 id AA
48 39 34 addcld AA+2A
49 47 48 47 adddid AAA+2A+A=AA+2A+AA
50 44 46 49 3eqtr4d AA+A2=AA+2A+A
51 9 34 mulcld AA2A
52 9 39 mulcld AAA
53 51 52 addcomd AA2A+AA=AA+A2A
54 9 9 mulcld AAA
55 54 2timesd A2AA=AA+AA
56 mul12 2AA2AA=A2A
57 29 9 9 56 mp3an2i A2AA=A2A
58 9 sqvald AA2=AA
59 mulcom AAAA=AA
60 39 59 mpdan AAA=AA
61 28 58 60 3eqtr3d AAA=AA
62 61 oveq2d AAA+AA=AA+AA
63 55 57 62 3eqtr3rd AAA+AA=A2A
64 63 oveq1d AAA+AA+AA=A2A+AA
65 9 39 34 adddid AAA+2A=AA+A2A
66 53 64 65 3eqtr4d AAA+AA+AA=AA+2A
67 66 oveq1d AAA+AA+AA+AA=AA+2A+AA
68 cjadd AAA+A=A+A
69 9 68 mpancom AA+A=A+A
70 3 cjred AA=A
71 70 oveq1d AA+A=A+A
72 69 71 eqtrd AA+A=A+A
73 72 oveq2d AA+AA+A=A+AA+A
74 9 47 9 39 muladdd AA+AA+A=AA+AA+AA+AA
75 73 74 eqtrd AA+AA+A=AA+AA+AA+AA
76 absvalsq A+AA+A2=A+AA+A
77 11 76 syl AA+A2=A+AA+A
78 mulcl AAAA
79 39 78 mpancom AAA
80 54 79 addcld AAA+AA
81 mulcl AAAA
82 9 81 mpancom AAA
83 80 52 82 addassd AAA+AA+AA+AA=AA+AA+AA+AA
84 75 77 83 3eqtr4d AA+A2=AA+AA+AA+AA
85 9 48 47 adddid AAA+2A+A=AA+2A+AA
86 67 84 85 3eqtr4d AA+A2=AA+2A+A
87 50 86 oveq12d AA+A2A+A2=AA+2A+AAA+2A+A
88 87 adantr AA+A0A+A2A+A2=AA+2A+AAA+2A+A
89 27 88 eqtrd AA+A0A+AA+A2=AA+2A+AAA+2A+A
90 26 89 oveq12d AA+A0A2A+AA+A2=AAA+2A+AAA+2A+A
91 addcl A+2AAA+2A+A
92 48 91 mpancom AA+2A+A
93 9 47 92 mul12d AAAA+2A+A=AAA+2A+A
94 93 oveq1d AAAA+2A+AAA+2A+A=AAA+2A+AAA+2A+A
95 94 adantr AA+A0AAA+2A+AAA+2A+A=AAA+2A+AAA+2A+A
96 9 adantr AA+A0A
97 mulcl AA+2A+AAA+2A+A
98 92 97 mpdan AAA+2A+A
99 98 adantr AA+A0AA+2A+A
100 9 92 mulcld AAA+2A+A
101 100 adantr AA+A0AA+2A+A
102 sqeq0 A+AA+A2=0A+A=0
103 15 102 syl AA+A2=0A+A=0
104 86 eqeq1d AA+A2=0AA+2A+A=0
105 103 104 17 3bitr3rd AA+A=0AA+2A+A=0
106 105 necon3bid AA+A0AA+2A+A0
107 106 biimpa AA+A0AA+2A+A0
108 96 99 101 107 divassd AA+A0AAA+2A+AAA+2A+A=AAA+2A+AAA+2A+A
109 simpl AA+A0A
110 109 101 107 divcan4d AA+A0AAA+2A+AAA+2A+A=A
111 95 108 110 3eqtr3d AA+A0AAA+2A+AAA+2A+A=A
112 22 90 111 3eqtrd AA+A0B2=A
113 6 adantr AA+A0A
114 11 addcjd AA+A+A+A=2A+A
115 2re 2
116 11 recld AA+A
117 remulcl 2A+A2A+A
118 115 116 117 sylancr A2A+A
119 114 118 eqeltrd AA+A+A+A
120 119 adantr AA+A0A+A+A+A
121 14 adantr AA+A0A+A
122 120 121 19 redivcld AA+A0A+A+A+AA+A
123 113 122 remulcld AA+A0AA+A+A+AA+A
124 sqrtge0 A0A0A
125 3 4 124 syl2anc A0A
126 125 adantr AA+A00A
127 negcl AA
128 releabs AAA
129 127 128 syl AAA
130 abscl AA
131 127 130 syl AA
132 127 recld AA
133 131 132 subge0d A0AAAA
134 129 133 mpbird A0AA
135 readd AAA+A=A+A
136 9 135 mpancom AA+A=A+A
137 3 rered AA=A
138 absneg AA=A
139 137 138 eqtr4d AA=A
140 negneg AA=A
141 140 fveq2d AA=A
142 127 renegd AA=A
143 141 142 eqtr3d AA=A
144 139 143 oveq12d AA+A=A+A
145 131 recnd AA
146 132 recnd AA
147 145 146 negsubd AA+A=AA
148 136 144 147 3eqtrd AA+A=AA
149 134 148 breqtrrd A0A+A
150 0le2 02
151 mulge0 202A+A0A+A02A+A
152 115 150 151 mpanl12 A+A0A+A02A+A
153 116 149 152 syl2anc A02A+A
154 153 114 breqtrrd A0A+A+A+A
155 154 adantr AA+A00A+A+A+A
156 absge0 A+A0A+A
157 12 156 syl AA+A00A+A
158 121 157 19 ne0gt0d AA+A00<A+A
159 divge0 A+A+A+A0A+A+A+AA+A0<A+A0A+A+A+AA+A
160 120 155 121 158 159 syl22anc AA+A00A+A+A+AA+A
161 113 122 126 160 mulge0d AA+A00AA+A+A+AA+A
162 2pos 0<2
163 divge0 AA+A+A+AA+A0AA+A+A+AA+A20<20AA+A+A+AA+A2
164 115 162 163 mpanr12 AA+A+A+AA+A0AA+A+A+AA+A0AA+A+A+AA+A2
165 123 161 164 syl2anc AA+A00AA+A+A+AA+A2
166 8 20 mulcld AA+A0AA+AA+A
167 1 166 eqeltrid AA+A0B
168 reval BB=B+B2
169 167 168 syl AA+A0B=B+B2
170 1 oveq1i B+AA+AA+A=AA+AA+A+AA+AA+A
171 1 fveq2i B=AA+AA+A
172 8 20 cjmuld AA+A0AA+AA+A=AA+AA+A
173 171 172 eqtrid AA+A0B=AA+AA+A
174 6 cjred AA=A
175 174 adantr AA+A0A=A
176 12 16 19 cjdivd AA+A0A+AA+A=A+AA+A
177 121 cjred AA+A0A+A=A+A
178 177 oveq2d AA+A0A+AA+A=A+AA+A
179 176 178 eqtrd AA+A0A+AA+A=A+AA+A
180 175 179 oveq12d AA+A0AA+AA+A=AA+AA+A
181 173 180 eqtrd AA+A0B=AA+AA+A
182 181 oveq2d AA+A0B+B=B+AA+AA+A
183 12 cjcld AA+A0A+A
184 183 16 19 divcld AA+A0A+AA+A
185 8 20 184 adddid AA+A0AA+AA+A+A+AA+A=AA+AA+A+AA+AA+A
186 170 182 185 3eqtr4a AA+A0B+B=AA+AA+A+A+AA+A
187 12 183 16 19 divdird AA+A0A+A+A+AA+A=A+AA+A+A+AA+A
188 187 oveq2d AA+A0AA+A+A+AA+A=AA+AA+A+A+AA+A
189 186 188 eqtr4d AA+A0B+B=AA+A+A+AA+A
190 189 oveq1d AA+A0B+B2=AA+A+A+AA+A2
191 169 190 eqtrd AA+A0B=AA+A+A+AA+A2
192 165 191 breqtrrd AA+A00B
193 subneg AAAA=A+A
194 9 193 mpancom AAA=A+A
195 194 eqeq1d AAA=0A+A=0
196 9 127 subeq0ad AAA=0A=A
197 195 196 bitr3d AA+A=0A=A
198 197 necon3bid AA+A0AA
199 198 biimpa AA+A0AA
200 resqcl iBiB2
201 ax-icn i
202 sqmul iBiB2=i2B2
203 201 167 202 sylancr AA+A0iB2=i2B2
204 i2 i2=1
205 204 a1i AA+A0i2=1
206 205 112 oveq12d AA+A0i2B2=-1A
207 mulm1 A-1A=A
208 207 adantr AA+A0-1A=A
209 203 206 208 3eqtrd AA+A0iB2=A
210 209 eleq1d AA+A0iB2A
211 200 210 imbitrid AA+A0iBA
212 renegcl AA
213 140 eleq1d AAA
214 212 213 imbitrid AAA
215 109 211 214 sylsyld AA+A0iBA
216 sqge0 iB0iB2
217 209 breq2d AA+A00iB20A
218 216 217 imbitrid AA+A0iB0A
219 le0neg1 AA00A
220 219 biimprcd 0AAA0
221 218 215 220 syl6c AA+A0iBA0
222 215 221 jcad AA+A0iBAA0
223 absnid AA0A=A
224 222 223 syl6 AA+A0iBA=A
225 224 necon3ad AA+A0AA¬iB
226 199 225 mpd AA+A0¬iB
227 rpre iB+iB
228 226 227 nsyl AA+A0¬iB+
229 df-nel iB+¬iB+
230 228 229 sylibr AA+A0iB+
231 112 192 230 3jca AA+A0B2=A0BiB+