Metamath Proof Explorer


Theorem sqreulem

Description: Lemma for sqreu : write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Hypothesis sqrteulem.1 B = A A + A A + A
Assertion sqreulem A A + A 0 B 2 = A 0 B i B +

Proof

Step Hyp Ref Expression
1 sqrteulem.1 B = A A + A A + A
2 1 oveq1i B 2 = A A + A A + A 2
3 abscl A A
4 absge0 A 0 A
5 resqrtcl A 0 A A
6 3 4 5 syl2anc A A
7 6 recnd A A
8 7 adantr A A + A 0 A
9 3 recnd A A
10 addcl A A A + A
11 9 10 mpancom A A + A
12 11 adantr A A + A 0 A + A
13 abscl A + A A + A
14 11 13 syl A A + A
15 14 recnd A A + A
16 15 adantr A A + A 0 A + A
17 11 abs00ad A A + A = 0 A + A = 0
18 17 necon3bid A A + A 0 A + A 0
19 18 biimpar A A + A 0 A + A 0
20 12 16 19 divcld A A + A 0 A + A A + A
21 8 20 sqmuld A A + A 0 A A + A A + A 2 = A 2 A + A A + A 2
22 2 21 syl5eq A A + A 0 B 2 = A 2 A + A A + A 2
23 3 adantr A A + A 0 A
24 4 adantr A A + A 0 0 A
25 resqrtth A 0 A A 2 = A
26 23 24 25 syl2anc A A + A 0 A 2 = A
27 12 16 19 sqdivd A A + A 0 A + A A + A 2 = A + A 2 A + A 2
28 absvalsq A A 2 = A A
29 2cn 2
30 mulass 2 A A 2 A A = 2 A A
31 29 30 mp3an1 A A 2 A A = 2 A A
32 9 31 mpancom A 2 A A = 2 A A
33 mulcl 2 A 2 A
34 29 9 33 sylancr A 2 A
35 mulcom 2 A A 2 A A = A 2 A
36 34 35 mpancom A 2 A A = A 2 A
37 32 36 eqtr3d A 2 A A = A 2 A
38 28 37 oveq12d A A 2 + 2 A A = A A + A 2 A
39 cjcl A A
40 adddi A A 2 A A A + 2 A = A A + A 2 A
41 39 34 40 mpd3an23 A A A + 2 A = A A + A 2 A
42 38 41 eqtr4d A A 2 + 2 A A = A A + 2 A
43 sqval A A 2 = A A
44 42 43 oveq12d A A 2 + 2 A A + A 2 = A A + 2 A + A A
45 binom2 A A A + A 2 = A 2 + 2 A A + A 2
46 9 45 mpancom A A + A 2 = A 2 + 2 A A + A 2
47 id A A
48 39 34 addcld A A + 2 A
49 47 48 47 adddid A A A + 2 A + A = A A + 2 A + A A
50 44 46 49 3eqtr4d A A + A 2 = A A + 2 A + A
51 9 34 mulcld A A 2 A
52 9 39 mulcld A A A
53 51 52 addcomd A A 2 A + A A = A A + A 2 A
54 9 9 mulcld A A A
55 54 2timesd A 2 A A = A A + A A
56 mul12 2 A A 2 A A = A 2 A
57 29 9 9 56 mp3an2i A 2 A A = A 2 A
58 9 sqvald A A 2 = A A
59 mulcom A A A A = A A
60 39 59 mpdan A A A = A A
61 28 58 60 3eqtr3d A A A = A A
62 61 oveq2d A A A + A A = A A + A A
63 55 57 62 3eqtr3rd A A A + A A = A 2 A
64 63 oveq1d A A A + A A + A A = A 2 A + A A
65 9 39 34 adddid A A A + 2 A = A A + A 2 A
66 53 64 65 3eqtr4d A A A + A A + A A = A A + 2 A
67 66 oveq1d A A A + A A + A A + A A = A A + 2 A + A A
68 cjadd A A A + A = A + A
69 9 68 mpancom A A + A = A + A
70 3 cjred A A = A
71 70 oveq1d A A + A = A + A
72 69 71 eqtrd A A + A = A + A
73 72 oveq2d A A + A A + A = A + A A + A
74 9 47 9 39 muladdd A A + A A + A = A A + A A + A A + A A
75 73 74 eqtrd A A + A A + A = A A + A A + A A + A A
76 absvalsq A + A A + A 2 = A + A A + A
77 11 76 syl A A + A 2 = A + A A + A
78 mulcl A A A A
79 39 78 mpancom A A A
80 54 79 addcld A A A + A A
81 mulcl A A A A
82 9 81 mpancom A A A
83 80 52 82 addassd A A A + A A + A A + A A = A A + A A + A A + A A
84 75 77 83 3eqtr4d A A + A 2 = A A + A A + A A + A A
85 9 48 47 adddid A A A + 2 A + A = A A + 2 A + A A
86 67 84 85 3eqtr4d A A + A 2 = A A + 2 A + A
87 50 86 oveq12d A A + A 2 A + A 2 = A A + 2 A + A A A + 2 A + A
88 87 adantr A A + A 0 A + A 2 A + A 2 = A A + 2 A + A A A + 2 A + A
89 27 88 eqtrd A A + A 0 A + A A + A 2 = A A + 2 A + A A A + 2 A + A
90 26 89 oveq12d A A + A 0 A 2 A + A A + A 2 = A A A + 2 A + A A A + 2 A + A
91 addcl A + 2 A A A + 2 A + A
92 48 91 mpancom A A + 2 A + A
93 9 47 92 mul12d A A A A + 2 A + A = A A A + 2 A + A
94 93 oveq1d A A A A + 2 A + A A A + 2 A + A = A A A + 2 A + A A A + 2 A + A
95 94 adantr A A + A 0 A A A + 2 A + A A A + 2 A + A = A A A + 2 A + A A A + 2 A + A
96 9 adantr A A + A 0 A
97 mulcl A A + 2 A + A A A + 2 A + A
98 92 97 mpdan A A A + 2 A + A
99 98 adantr A A + A 0 A A + 2 A + A
100 9 92 mulcld A A A + 2 A + A
101 100 adantr A A + A 0 A A + 2 A + A
102 sqeq0 A + A A + A 2 = 0 A + A = 0
103 15 102 syl A A + A 2 = 0 A + A = 0
104 86 eqeq1d A A + A 2 = 0 A A + 2 A + A = 0
105 103 104 17 3bitr3rd A A + A = 0 A A + 2 A + A = 0
106 105 necon3bid A A + A 0 A A + 2 A + A 0
107 106 biimpa A A + A 0 A A + 2 A + A 0
108 96 99 101 107 divassd A A + A 0 A A A + 2 A + A A A + 2 A + A = A A A + 2 A + A A A + 2 A + A
109 simpl A A + A 0 A
110 109 101 107 divcan4d A A + A 0 A A A + 2 A + A A A + 2 A + A = A
111 95 108 110 3eqtr3d A A + A 0 A A A + 2 A + A A A + 2 A + A = A
112 22 90 111 3eqtrd A A + A 0 B 2 = A
113 6 adantr A A + A 0 A
114 11 addcjd A A + A + A + A = 2 A + A
115 2re 2
116 11 recld A A + A
117 remulcl 2 A + A 2 A + A
118 115 116 117 sylancr A 2 A + A
119 114 118 eqeltrd A A + A + A + A
120 119 adantr A A + A 0 A + A + A + A
121 14 adantr A A + A 0 A + A
122 120 121 19 redivcld A A + A 0 A + A + A + A A + A
123 113 122 remulcld A A + A 0 A A + A + A + A A + A
124 sqrtge0 A 0 A 0 A
125 3 4 124 syl2anc A 0 A
126 125 adantr A A + A 0 0 A
127 negcl A A
128 releabs A A A
129 127 128 syl A A A
130 abscl A A
131 127 130 syl A A
132 127 recld A A
133 131 132 subge0d A 0 A A A A
134 129 133 mpbird A 0 A A
135 readd A A A + A = A + A
136 9 135 mpancom A A + A = A + A
137 3 rered A A = A
138 absneg A A = A
139 137 138 eqtr4d A A = A
140 negneg A A = A
141 140 fveq2d A A = A
142 127 renegd A A = A
143 141 142 eqtr3d A A = A
144 139 143 oveq12d A A + A = A + A
145 131 recnd A A
146 132 recnd A A
147 145 146 negsubd A A + A = A A
148 136 144 147 3eqtrd A A + A = A A
149 134 148 breqtrrd A 0 A + A
150 0le2 0 2
151 mulge0 2 0 2 A + A 0 A + A 0 2 A + A
152 115 150 151 mpanl12 A + A 0 A + A 0 2 A + A
153 116 149 152 syl2anc A 0 2 A + A
154 153 114 breqtrrd A 0 A + A + A + A
155 154 adantr A A + A 0 0 A + A + A + A
156 absge0 A + A 0 A + A
157 12 156 syl A A + A 0 0 A + A
158 121 157 19 ne0gt0d A A + A 0 0 < A + A
159 divge0 A + A + A + A 0 A + A + A + A A + A 0 < A + A 0 A + A + A + A A + A
160 120 155 121 158 159 syl22anc A A + A 0 0 A + A + A + A A + A
161 113 122 126 160 mulge0d A A + A 0 0 A A + A + A + A A + A
162 2pos 0 < 2
163 divge0 A A + A + A + A A + A 0 A A + A + A + A A + A 2 0 < 2 0 A A + A + A + A A + A 2
164 115 162 163 mpanr12 A A + A + A + A A + A 0 A A + A + A + A A + A 0 A A + A + A + A A + A 2
165 123 161 164 syl2anc A A + A 0 0 A A + A + A + A A + A 2
166 8 20 mulcld A A + A 0 A A + A A + A
167 1 166 eqeltrid A A + A 0 B
168 reval B B = B + B 2
169 167 168 syl A A + A 0 B = B + B 2
170 1 oveq1i B + A A + A A + A = A A + A A + A + A A + A A + A
171 1 fveq2i B = A A + A A + A
172 8 20 cjmuld A A + A 0 A A + A A + A = A A + A A + A
173 171 172 syl5eq A A + A 0 B = A A + A A + A
174 6 cjred A A = A
175 174 adantr A A + A 0 A = A
176 12 16 19 cjdivd A A + A 0 A + A A + A = A + A A + A
177 121 cjred A A + A 0 A + A = A + A
178 177 oveq2d A A + A 0 A + A A + A = A + A A + A
179 176 178 eqtrd A A + A 0 A + A A + A = A + A A + A
180 175 179 oveq12d A A + A 0 A A + A A + A = A A + A A + A
181 173 180 eqtrd A A + A 0 B = A A + A A + A
182 181 oveq2d A A + A 0 B + B = B + A A + A A + A
183 12 cjcld A A + A 0 A + A
184 183 16 19 divcld A A + A 0 A + A A + A
185 8 20 184 adddid A A + A 0 A A + A A + A + A + A A + A = A A + A A + A + A A + A A + A
186 170 182 185 3eqtr4a A A + A 0 B + B = A A + A A + A + A + A A + A
187 12 183 16 19 divdird A A + A 0 A + A + A + A A + A = A + A A + A + A + A A + A
188 187 oveq2d A A + A 0 A A + A + A + A A + A = A A + A A + A + A + A A + A
189 186 188 eqtr4d A A + A 0 B + B = A A + A + A + A A + A
190 189 oveq1d A A + A 0 B + B 2 = A A + A + A + A A + A 2
191 169 190 eqtrd A A + A 0 B = A A + A + A + A A + A 2
192 165 191 breqtrrd A A + A 0 0 B
193 subneg A A A A = A + A
194 9 193 mpancom A A A = A + A
195 194 eqeq1d A A A = 0 A + A = 0
196 9 127 subeq0ad A A A = 0 A = A
197 195 196 bitr3d A A + A = 0 A = A
198 197 necon3bid A A + A 0 A A
199 198 biimpa A A + A 0 A A
200 resqcl i B i B 2
201 ax-icn i
202 sqmul i B i B 2 = i 2 B 2
203 201 167 202 sylancr A A + A 0 i B 2 = i 2 B 2
204 i2 i 2 = 1
205 204 a1i A A + A 0 i 2 = 1
206 205 112 oveq12d A A + A 0 i 2 B 2 = -1 A
207 mulm1 A -1 A = A
208 207 adantr A A + A 0 -1 A = A
209 203 206 208 3eqtrd A A + A 0 i B 2 = A
210 209 eleq1d A A + A 0 i B 2 A
211 200 210 syl5ib A A + A 0 i B A
212 renegcl A A
213 140 eleq1d A A A
214 212 213 syl5ib A A A
215 109 211 214 sylsyld A A + A 0 i B A
216 sqge0 i B 0 i B 2
217 209 breq2d A A + A 0 0 i B 2 0 A
218 216 217 syl5ib A A + A 0 i B 0 A
219 le0neg1 A A 0 0 A
220 219 biimprcd 0 A A A 0
221 218 215 220 syl6c A A + A 0 i B A 0
222 215 221 jcad A A + A 0 i B A A 0
223 absnid A A 0 A = A
224 222 223 syl6 A A + A 0 i B A = A
225 224 necon3ad A A + A 0 A A ¬ i B
226 199 225 mpd A A + A 0 ¬ i B
227 rpre i B + i B
228 226 227 nsyl A A + A 0 ¬ i B +
229 df-nel i B + ¬ i B +
230 228 229 sylibr A A + A 0 i B +
231 112 192 230 3jca A A + A 0 B 2 = A 0 B i B +