Metamath Proof Explorer


Theorem stoweidlem48

Description: This lemma is used to prove that x built as in Lemma 2 of BrosowskiDeutsh p. 91, is such that x < ε on A . Here X is used to represent x in the paper, E is used to represent ε in the paper, and D is used to represent A in the paper (because A is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem48.1 iφ
stoweidlem48.2 tφ
stoweidlem48.3 Y=hA|tT0htht1
stoweidlem48.4 P=fY,gYtTftgt
stoweidlem48.5 X=seq1PUM
stoweidlem48.6 F=tTi1MUit
stoweidlem48.7 Z=tTseq1×FtM
stoweidlem48.8 φM
stoweidlem48.9 φW:1MV
stoweidlem48.10 φU:1MY
stoweidlem48.11 φDranW
stoweidlem48.12 φDT
stoweidlem48.13 φi1MtWiUit<E
stoweidlem48.14 φTV
stoweidlem48.15 φfAf:T
stoweidlem48.16 φfAgAtTftgtA
stoweidlem48.17 φE+
Assertion stoweidlem48 φtDXt<E

Proof

Step Hyp Ref Expression
1 stoweidlem48.1 iφ
2 stoweidlem48.2 tφ
3 stoweidlem48.3 Y=hA|tT0htht1
4 stoweidlem48.4 P=fY,gYtTftgt
5 stoweidlem48.5 X=seq1PUM
6 stoweidlem48.6 F=tTi1MUit
7 stoweidlem48.7 Z=tTseq1×FtM
8 stoweidlem48.8 φM
9 stoweidlem48.9 φW:1MV
10 stoweidlem48.10 φU:1MY
11 stoweidlem48.11 φDranW
12 stoweidlem48.12 φDT
13 stoweidlem48.13 φi1MtWiUit<E
14 stoweidlem48.14 φTV
15 stoweidlem48.15 φfAf:T
16 stoweidlem48.16 φfAgAtTftgtA
17 stoweidlem48.17 φE+
18 12 sselda φtDtT
19 nfra1 ttT0htht1
20 nfcv _tA
21 19 20 nfrabw _thA|tT0htht1
22 3 21 nfcxfr _tY
23 3 eleq2i fYfhA|tT0htht1
24 fveq1 h=fht=ft
25 24 breq2d h=f0ht0ft
26 24 breq1d h=fht1ft1
27 25 26 anbi12d h=f0htht10ftft1
28 27 ralbidv h=ftT0htht1tT0ftft1
29 28 elrab fhA|tT0htht1fAtT0ftft1
30 23 29 sylbb fYfAtT0ftft1
31 30 simpld fYfA
32 31 15 sylan2 φfYf:T
33 eqid tTftgt=tTftgt
34 2 3 33 15 16 stoweidlem16 φfYgYtTftgtY
35 1 22 4 5 6 7 14 8 10 32 34 fmuldfeq φtTXt=Zt
36 18 35 syldan φtDXt=Zt
37 elnnuz MM1
38 8 37 sylib φM1
39 38 adantr φtDM1
40 nfv itT
41 1 40 nfan iφtT
42 10 ffvelcdmda φi1MUiY
43 fveq1 h=Uiht=Uit
44 43 breq2d h=Ui0ht0Uit
45 43 breq1d h=Uiht1Uit1
46 44 45 anbi12d h=Ui0htht10UitUit1
47 46 ralbidv h=UitT0htht1tT0UitUit1
48 47 3 elrab2 UiYUiAtT0UitUit1
49 42 48 sylib φi1MUiAtT0UitUit1
50 49 simpld φi1MUiA
51 simpl φi1Mφ
52 51 50 jca φi1MφUiA
53 eleq1 f=UifAUiA
54 53 anbi2d f=UiφfAφUiA
55 feq1 f=Uif:TUi:T
56 54 55 imbi12d f=UiφfAf:TφUiAUi:T
57 56 15 vtoclg UiAφUiAUi:T
58 50 52 57 sylc φi1MUi:T
59 58 adantlr φtTi1MUi:T
60 simplr φtTi1MtT
61 59 60 ffvelcdmd φtTi1MUit
62 eqid i1MUit=i1MUit
63 41 61 62 fmptdf φtTi1MUit:1M
64 simpr φtTtT
65 ovex 1MV
66 mptexg 1MVi1MUitV
67 65 66 mp1i φtTi1MUitV
68 6 fvmpt2 tTi1MUitVFt=i1MUit
69 64 67 68 syl2anc φtTFt=i1MUit
70 69 feq1d φtTFt:1Mi1MUit:1M
71 63 70 mpbird φtTFt:1M
72 18 71 syldan φtDFt:1M
73 72 ffvelcdmda φtDk1MFtk
74 remulcl kjkj
75 74 adantl φtDkjkj
76 39 73 75 seqcl φtDseq1×FtM
77 7 fvmpt2 tTseq1×FtMZt=seq1×FtM
78 18 76 77 syl2anc φtDZt=seq1×FtM
79 nfcv _iT
80 nfmpt1 _ii1MUit
81 79 80 nfmpt _itTi1MUit
82 6 81 nfcxfr _iF
83 nfcv _it
84 82 83 nffv _iFt
85 nfv itD
86 1 85 nfan iφtD
87 nfcv _jseq1×Ft
88 eqid seq1×Ft=seq1×Ft
89 8 adantr φtDM
90 simpll φtDi1Mφ
91 simpr φtDi1Mi1M
92 18 adantr φtDi1MtT
93 49 simprd φi1MtT0UitUit1
94 93 r19.21bi φi1MtT0UitUit1
95 94 simpld φi1MtT0Uit
96 90 91 92 95 syl21anc φtDi1M0Uit
97 69 fveq1d φtTFti=i1MUiti
98 90 92 97 syl2anc φtDi1MFti=i1MUiti
99 90 92 91 61 syl21anc φtDi1MUit
100 62 fvmpt2 i1MUiti1MUiti=Uit
101 91 99 100 syl2anc φtDi1Mi1MUiti=Uit
102 98 101 eqtrd φtDi1MFti=Uit
103 96 102 breqtrrd φtDi1M0Fti
104 94 simprd φi1MtTUit1
105 90 91 92 104 syl21anc φtDi1MUit1
106 102 105 eqbrtrd φtDi1MFti1
107 17 adantr φtDE+
108 11 sselda φtDtranW
109 eluni tranWwtwwranW
110 108 109 sylib φtDwtwwranW
111 ffn W:1MVWFn1M
112 fvelrnb WFn1MwranWj1MWj=w
113 9 111 112 3syl φwranWj1MWj=w
114 113 biimpa φwranWj1MWj=w
115 114 adantrl φtwwranWj1MWj=w
116 simplr φtwWj=wtw
117 simpr φtwWj=wWj=w
118 116 117 eleqtrrd φtwWj=wtWj
119 118 ex φtwWj=wtWj
120 119 reximdv φtwj1MWj=wj1MtWj
121 120 adantrr φtwwranWj1MWj=wj1MtWj
122 115 121 mpd φtwwranWj1MtWj
123 122 ex φtwwranWj1MtWj
124 123 exlimdv φwtwwranWj1MtWj
125 124 adantr φtDwtwwranWj1MtWj
126 110 125 mpd φtDj1MtWj
127 simplll φtDj1MtWjφ
128 simplr φtDj1MtWjj1M
129 simpr φtDj1MtWjtWj
130 nfv ij1M
131 nfv itWj
132 1 130 131 nf3an iφj1MtWj
133 nfv iUjt<E
134 132 133 nfim iφj1MtWjUjt<E
135 eleq1 i=ji1Mj1M
136 fveq2 i=jWi=Wj
137 136 eleq2d i=jtWitWj
138 135 137 3anbi23d i=jφi1MtWiφj1MtWj
139 fveq2 i=jUi=Uj
140 139 fveq1d i=jUit=Ujt
141 140 breq1d i=jUit<EUjt<E
142 138 141 imbi12d i=jφi1MtWiUit<Eφj1MtWjUjt<E
143 13 r19.21bi φi1MtWiUit<E
144 143 3impa φi1MtWiUit<E
145 134 142 144 chvarfv φj1MtWjUjt<E
146 127 128 129 145 syl3anc φtDj1MtWjUjt<E
147 146 ex φtDj1MtWjUjt<E
148 147 reximdva φtDj1MtWjj1MUjt<E
149 126 148 mpd φtDj1MUjt<E
150 86 130 nfan iφtDj1M
151 nfcv _ij
152 84 151 nffv _iFtj
153 152 nfeq1 iFtj=Ujt
154 150 153 nfim iφtDj1MFtj=Ujt
155 135 anbi2d i=jφtDi1MφtDj1M
156 fveq2 i=jFti=Ftj
157 156 140 eqeq12d i=jFti=UitFtj=Ujt
158 155 157 imbi12d i=jφtDi1MFti=UitφtDj1MFtj=Ujt
159 154 158 102 chvarfv φtDj1MFtj=Ujt
160 159 breq1d φtDj1MFtj<EUjt<E
161 160 biimprd φtDj1MUjt<EFtj<E
162 161 reximdva φtDj1MUjt<Ej1MFtj<E
163 149 162 mpd φtDj1MFtj<E
164 84 86 87 88 89 72 103 106 107 163 fmul01lt1 φtDseq1×FtM<E
165 78 164 eqbrtrd φtDZt<E
166 36 165 eqbrtrd φtDXt<E
167 166 ex φtDXt<E
168 2 167 ralrimi φtDXt<E