Metamath Proof Explorer


Theorem supmul1

Description: The supremum function distributes over multiplication, in the sense that A x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { A x. b | b e. B } and is defined as C below. This is the simple version, with only one set argument; see supmul for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013)

Ref Expression
Hypotheses supmul1.1 C=z|vBz=Av
supmul1.2 φA0AxB0xBBxyByx
Assertion supmul1 φAsupB<=supC<

Proof

Step Hyp Ref Expression
1 supmul1.1 C=z|vBz=Av
2 supmul1.2 φA0AxB0xBBxyByx
3 vex wV
4 oveq2 v=bAv=Ab
5 4 eqeq2d v=bz=Avz=Ab
6 5 cbvrexvw vBz=AvbBz=Ab
7 eqeq1 z=wz=Abw=Ab
8 7 rexbidv z=wbBz=AbbBw=Ab
9 6 8 bitrid z=wvBz=AvbBw=Ab
10 3 9 1 elab2 wCbBw=Ab
11 simpr A0AxB0xBBxyByxBBxyByx
12 2 11 sylbi φBBxyByx
13 12 simp1d φB
14 13 sselda φbBb
15 suprcl BBxyByxsupB<
16 12 15 syl φsupB<
17 16 adantr φbBsupB<
18 simpl1 A0AxB0xBBxyByxA
19 2 18 sylbi φA
20 simpl2 A0AxB0xBBxyByx0A
21 2 20 sylbi φ0A
22 19 21 jca φA0A
23 22 adantr φbBA0A
24 suprub BBxyByxbBbsupB<
25 12 24 sylan φbBbsupB<
26 lemul2a bsupB<A0AbsupB<AbAsupB<
27 14 17 23 25 26 syl31anc φbBAbAsupB<
28 breq1 w=AbwAsupB<AbAsupB<
29 27 28 syl5ibrcom φbBw=AbwAsupB<
30 29 rexlimdva φbBw=AbwAsupB<
31 10 30 biimtrid φwCwAsupB<
32 31 ralrimiv φwCwAsupB<
33 19 adantr φbBA
34 33 14 remulcld φbBAb
35 eleq1a Abw=Abw
36 34 35 syl φbBw=Abw
37 36 rexlimdva φbBw=Abw
38 10 37 biimtrid φwCw
39 38 ssrdv φC
40 simpr2 A0AxB0xBBxyByxB
41 2 40 sylbi φB
42 ovex AbV
43 42 isseti ww=Ab
44 43 rgenw bBww=Ab
45 r19.2z BbBww=AbbBww=Ab
46 41 44 45 sylancl φbBww=Ab
47 10 exbii wwCwbBw=Ab
48 n0 CwwC
49 rexcom4 bBww=AbwbBw=Ab
50 47 48 49 3bitr4i CbBww=Ab
51 46 50 sylibr φC
52 19 16 remulcld φAsupB<
53 brralrspcev AsupB<wCwAsupB<xwCwx
54 52 32 53 syl2anc φxwCwx
55 39 51 54 3jca φCCxwCwx
56 suprleub CCxwCwxAsupB<supC<AsupB<wCwAsupB<
57 55 52 56 syl2anc φsupC<AsupB<wCwAsupB<
58 32 57 mpbird φsupC<AsupB<
59 simpr φsupC<<AsupB<supC<<AsupB<
60 suprcl CCxwCwxsupC<
61 55 60 syl φsupC<
62 61 adantr φsupC<<AsupB<supC<
63 16 adantr φsupC<<AsupB<supB<
64 19 adantr φsupC<<AsupB<A
65 n0 BbbB
66 0red φbB0
67 simpl3 A0AxB0xBBxyByxxB0x
68 2 67 sylbi φxB0x
69 breq2 x=b0x0b
70 69 rspccva xB0xbB0b
71 68 70 sylan φbB0b
72 66 14 17 71 25 letrd φbB0supB<
73 72 ex φbB0supB<
74 73 exlimdv φbbB0supB<
75 65 74 biimtrid φB0supB<
76 41 75 mpd φ0supB<
77 76 adantr φsupC<<AsupB<0supB<
78 0red φwC0
79 38 imp φwCw
80 61 adantr φwCsupC<
81 21 adantr φbB0A
82 33 14 81 71 mulge0d φbB0Ab
83 breq2 w=Ab0w0Ab
84 82 83 syl5ibrcom φbBw=Ab0w
85 84 rexlimdva φbBw=Ab0w
86 10 85 biimtrid φwC0w
87 86 imp φwC0w
88 suprub CCxwCwxwCwsupC<
89 55 88 sylan φwCwsupC<
90 78 79 80 87 89 letrd φwC0supC<
91 90 ex φwC0supC<
92 91 exlimdv φwwC0supC<
93 48 92 biimtrid φC0supC<
94 51 93 mpd φ0supC<
95 94 anim1i φsupC<<AsupB<0supC<supC<<AsupB<
96 0red φ0
97 lelttr 0supC<AsupB<0supC<supC<<AsupB<0<AsupB<
98 96 61 52 97 syl3anc φ0supC<supC<<AsupB<0<AsupB<
99 98 adantr φsupC<<AsupB<0supC<supC<<AsupB<0<AsupB<
100 95 99 mpd φsupC<<AsupB<0<AsupB<
101 prodgt02 AsupB<0supB<0<AsupB<0<A
102 64 63 77 100 101 syl22anc φsupC<<AsupB<0<A
103 ltdivmul supC<supB<A0<AsupC<A<supB<supC<<AsupB<
104 62 63 64 102 103 syl112anc φsupC<<AsupB<supC<A<supB<supC<<AsupB<
105 59 104 mpbird φsupC<<AsupB<supC<A<supB<
106 12 adantr φsupC<<AsupB<BBxyByx
107 102 gt0ne0d φsupC<<AsupB<A0
108 62 64 107 redivcld φsupC<<AsupB<supC<A
109 suprlub BBxyByxsupC<AsupC<A<supB<bBsupC<A<b
110 106 108 109 syl2anc φsupC<<AsupB<supC<A<supB<bBsupC<A<b
111 105 110 mpbid φsupC<<AsupB<bBsupC<A<b
112 34 adantlr φsupC<<AsupB<bBAb
113 61 ad2antrr φsupC<<AsupB<bBsupC<
114 rspe bBw=AbbBw=Ab
115 114 10 sylibr bBw=AbwC
116 115 adantl φbBw=AbwC
117 simplrr φbBw=AbwCw=Ab
118 89 adantlr φbBw=AbwCwsupC<
119 117 118 eqbrtrrd φbBw=AbwCAbsupC<
120 116 119 mpdan φbBw=AbAbsupC<
121 120 expr φbBw=AbAbsupC<
122 121 exlimdv φbBww=AbAbsupC<
123 43 122 mpi φbBAbsupC<
124 123 adantlr φsupC<<AsupB<bBAbsupC<
125 112 113 124 lensymd φsupC<<AsupB<bB¬supC<<Ab
126 14 adantlr φsupC<<AsupB<bBb
127 19 ad2antrr φsupC<<AsupB<bBA
128 102 adantr φsupC<<AsupB<bB0<A
129 ltdivmul supC<bA0<AsupC<A<bsupC<<Ab
130 113 126 127 128 129 syl112anc φsupC<<AsupB<bBsupC<A<bsupC<<Ab
131 125 130 mtbird φsupC<<AsupB<bB¬supC<A<b
132 131 nrexdv φsupC<<AsupB<¬bBsupC<A<b
133 111 132 pm2.65da φ¬supC<<AsupB<
134 58 133 jca φsupC<AsupB<¬supC<<AsupB<
135 61 52 eqleltd φsupC<=AsupB<supC<AsupB<¬supC<<AsupB<
136 134 135 mpbird φsupC<=AsupB<
137 136 eqcomd φAsupB<=supC<