| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supmul1.1 |  | 
						
							| 2 |  | supmul1.2 |  | 
						
							| 3 |  | vex |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 | 4 | eqeq2d |  | 
						
							| 6 | 5 | cbvrexvw |  | 
						
							| 7 |  | eqeq1 |  | 
						
							| 8 | 7 | rexbidv |  | 
						
							| 9 | 6 8 | bitrid |  | 
						
							| 10 | 3 9 1 | elab2 |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 2 11 | sylbi |  | 
						
							| 13 | 12 | simp1d |  | 
						
							| 14 | 13 | sselda |  | 
						
							| 15 |  | suprcl |  | 
						
							| 16 | 12 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | simpl1 |  | 
						
							| 19 | 2 18 | sylbi |  | 
						
							| 20 |  | simpl2 |  | 
						
							| 21 | 2 20 | sylbi |  | 
						
							| 22 | 19 21 | jca |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | suprub |  | 
						
							| 25 | 12 24 | sylan |  | 
						
							| 26 |  | lemul2a |  | 
						
							| 27 | 14 17 23 25 26 | syl31anc |  | 
						
							| 28 |  | breq1 |  | 
						
							| 29 | 27 28 | syl5ibrcom |  | 
						
							| 30 | 29 | rexlimdva |  | 
						
							| 31 | 10 30 | biimtrid |  | 
						
							| 32 | 31 | ralrimiv |  | 
						
							| 33 | 19 | adantr |  | 
						
							| 34 | 33 14 | remulcld |  | 
						
							| 35 |  | eleq1a |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 36 | rexlimdva |  | 
						
							| 38 | 10 37 | biimtrid |  | 
						
							| 39 | 38 | ssrdv |  | 
						
							| 40 |  | simpr2 |  | 
						
							| 41 | 2 40 | sylbi |  | 
						
							| 42 |  | ovex |  | 
						
							| 43 | 42 | isseti |  | 
						
							| 44 | 43 | rgenw |  | 
						
							| 45 |  | r19.2z |  | 
						
							| 46 | 41 44 45 | sylancl |  | 
						
							| 47 | 10 | exbii |  | 
						
							| 48 |  | n0 |  | 
						
							| 49 |  | rexcom4 |  | 
						
							| 50 | 47 48 49 | 3bitr4i |  | 
						
							| 51 | 46 50 | sylibr |  | 
						
							| 52 | 19 16 | remulcld |  | 
						
							| 53 |  | brralrspcev |  | 
						
							| 54 | 52 32 53 | syl2anc |  | 
						
							| 55 | 39 51 54 | 3jca |  | 
						
							| 56 |  | suprleub |  | 
						
							| 57 | 55 52 56 | syl2anc |  | 
						
							| 58 | 32 57 | mpbird |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 |  | suprcl |  | 
						
							| 61 | 55 60 | syl |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 | 16 | adantr |  | 
						
							| 64 | 19 | adantr |  | 
						
							| 65 |  | n0 |  | 
						
							| 66 |  | 0red |  | 
						
							| 67 |  | simpl3 |  | 
						
							| 68 | 2 67 | sylbi |  | 
						
							| 69 |  | breq2 |  | 
						
							| 70 | 69 | rspccva |  | 
						
							| 71 | 68 70 | sylan |  | 
						
							| 72 | 66 14 17 71 25 | letrd |  | 
						
							| 73 | 72 | ex |  | 
						
							| 74 | 73 | exlimdv |  | 
						
							| 75 | 65 74 | biimtrid |  | 
						
							| 76 | 41 75 | mpd |  | 
						
							| 77 | 76 | adantr |  | 
						
							| 78 |  | 0red |  | 
						
							| 79 | 38 | imp |  | 
						
							| 80 | 61 | adantr |  | 
						
							| 81 | 21 | adantr |  | 
						
							| 82 | 33 14 81 71 | mulge0d |  | 
						
							| 83 |  | breq2 |  | 
						
							| 84 | 82 83 | syl5ibrcom |  | 
						
							| 85 | 84 | rexlimdva |  | 
						
							| 86 | 10 85 | biimtrid |  | 
						
							| 87 | 86 | imp |  | 
						
							| 88 |  | suprub |  | 
						
							| 89 | 55 88 | sylan |  | 
						
							| 90 | 78 79 80 87 89 | letrd |  | 
						
							| 91 | 90 | ex |  | 
						
							| 92 | 91 | exlimdv |  | 
						
							| 93 | 48 92 | biimtrid |  | 
						
							| 94 | 51 93 | mpd |  | 
						
							| 95 | 94 | anim1i |  | 
						
							| 96 |  | 0red |  | 
						
							| 97 |  | lelttr |  | 
						
							| 98 | 96 61 52 97 | syl3anc |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 95 99 | mpd |  | 
						
							| 101 |  | prodgt02 |  | 
						
							| 102 | 64 63 77 100 101 | syl22anc |  | 
						
							| 103 |  | ltdivmul |  | 
						
							| 104 | 62 63 64 102 103 | syl112anc |  | 
						
							| 105 | 59 104 | mpbird |  | 
						
							| 106 | 12 | adantr |  | 
						
							| 107 | 102 | gt0ne0d |  | 
						
							| 108 | 62 64 107 | redivcld |  | 
						
							| 109 |  | suprlub |  | 
						
							| 110 | 106 108 109 | syl2anc |  | 
						
							| 111 | 105 110 | mpbid |  | 
						
							| 112 | 34 | adantlr |  | 
						
							| 113 | 61 | ad2antrr |  | 
						
							| 114 |  | rspe |  | 
						
							| 115 | 114 10 | sylibr |  | 
						
							| 116 | 115 | adantl |  | 
						
							| 117 |  | simplrr |  | 
						
							| 118 | 89 | adantlr |  | 
						
							| 119 | 117 118 | eqbrtrrd |  | 
						
							| 120 | 116 119 | mpdan |  | 
						
							| 121 | 120 | expr |  | 
						
							| 122 | 121 | exlimdv |  | 
						
							| 123 | 43 122 | mpi |  | 
						
							| 124 | 123 | adantlr |  | 
						
							| 125 | 112 113 124 | lensymd |  | 
						
							| 126 | 14 | adantlr |  | 
						
							| 127 | 19 | ad2antrr |  | 
						
							| 128 | 102 | adantr |  | 
						
							| 129 |  | ltdivmul |  | 
						
							| 130 | 113 126 127 128 129 | syl112anc |  | 
						
							| 131 | 125 130 | mtbird |  | 
						
							| 132 | 131 | nrexdv |  | 
						
							| 133 | 111 132 | pm2.65da |  | 
						
							| 134 | 58 133 | jca |  | 
						
							| 135 | 61 52 | eqleltd |  | 
						
							| 136 | 134 135 | mpbird |  | 
						
							| 137 | 136 | eqcomd |  |