Metamath Proof Explorer


Theorem sylow1lem2

Description: Lemma for sylow1 . The function .(+) is a group action on S . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses sylow1.x X = Base G
sylow1.g φ G Grp
sylow1.f φ X Fin
sylow1.p φ P
sylow1.n φ N 0
sylow1.d φ P N X
sylow1lem.a + ˙ = + G
sylow1lem.s S = s 𝒫 X | s = P N
sylow1lem.m ˙ = x X , y S ran z y x + ˙ z
Assertion sylow1lem2 φ ˙ G GrpAct S

Proof

Step Hyp Ref Expression
1 sylow1.x X = Base G
2 sylow1.g φ G Grp
3 sylow1.f φ X Fin
4 sylow1.p φ P
5 sylow1.n φ N 0
6 sylow1.d φ P N X
7 sylow1lem.a + ˙ = + G
8 sylow1lem.s S = s 𝒫 X | s = P N
9 sylow1lem.m ˙ = x X , y S ran z y x + ˙ z
10 1 fvexi X V
11 10 pwex 𝒫 X V
12 8 11 rabex2 S V
13 2 12 jctir φ G Grp S V
14 simprl φ x X y S x X
15 eqid z X x + ˙ z = z X x + ˙ z
16 1 7 15 grplmulf1o G Grp x X z X x + ˙ z : X 1-1 onto X
17 2 14 16 syl2an2r φ x X y S z X x + ˙ z : X 1-1 onto X
18 f1of1 z X x + ˙ z : X 1-1 onto X z X x + ˙ z : X 1-1 X
19 17 18 syl φ x X y S z X x + ˙ z : X 1-1 X
20 simprr φ x X y S y S
21 fveqeq2 s = y s = P N y = P N
22 21 8 elrab2 y S y 𝒫 X y = P N
23 20 22 sylib φ x X y S y 𝒫 X y = P N
24 23 simpld φ x X y S y 𝒫 X
25 24 elpwid φ x X y S y X
26 f1ssres z X x + ˙ z : X 1-1 X y X z X x + ˙ z y : y 1-1 X
27 19 25 26 syl2anc φ x X y S z X x + ˙ z y : y 1-1 X
28 resmpt y X z X x + ˙ z y = z y x + ˙ z
29 f1eq1 z X x + ˙ z y = z y x + ˙ z z X x + ˙ z y : y 1-1 X z y x + ˙ z : y 1-1 X
30 25 28 29 3syl φ x X y S z X x + ˙ z y : y 1-1 X z y x + ˙ z : y 1-1 X
31 27 30 mpbid φ x X y S z y x + ˙ z : y 1-1 X
32 f1f z y x + ˙ z : y 1-1 X z y x + ˙ z : y X
33 frn z y x + ˙ z : y X ran z y x + ˙ z X
34 31 32 33 3syl φ x X y S ran z y x + ˙ z X
35 10 elpw2 ran z y x + ˙ z 𝒫 X ran z y x + ˙ z X
36 34 35 sylibr φ x X y S ran z y x + ˙ z 𝒫 X
37 f1f1orn z y x + ˙ z : y 1-1 X z y x + ˙ z : y 1-1 onto ran z y x + ˙ z
38 vex y V
39 38 f1oen z y x + ˙ z : y 1-1 onto ran z y x + ˙ z y ran z y x + ˙ z
40 31 37 39 3syl φ x X y S y ran z y x + ˙ z
41 ssfi X Fin y X y Fin
42 3 25 41 syl2an2r φ x X y S y Fin
43 ssfi X Fin ran z y x + ˙ z X ran z y x + ˙ z Fin
44 3 34 43 syl2an2r φ x X y S ran z y x + ˙ z Fin
45 hashen y Fin ran z y x + ˙ z Fin y = ran z y x + ˙ z y ran z y x + ˙ z
46 42 44 45 syl2anc φ x X y S y = ran z y x + ˙ z y ran z y x + ˙ z
47 40 46 mpbird φ x X y S y = ran z y x + ˙ z
48 23 simprd φ x X y S y = P N
49 47 48 eqtr3d φ x X y S ran z y x + ˙ z = P N
50 fveqeq2 s = ran z y x + ˙ z s = P N ran z y x + ˙ z = P N
51 50 8 elrab2 ran z y x + ˙ z S ran z y x + ˙ z 𝒫 X ran z y x + ˙ z = P N
52 36 49 51 sylanbrc φ x X y S ran z y x + ˙ z S
53 52 ralrimivva φ x X y S ran z y x + ˙ z S
54 9 fmpo x X y S ran z y x + ˙ z S ˙ : X × S S
55 53 54 sylib φ ˙ : X × S S
56 2 adantr φ a S G Grp
57 eqid 0 G = 0 G
58 1 57 grpidcl G Grp 0 G X
59 56 58 syl φ a S 0 G X
60 simpr φ a S a S
61 simpr x = 0 G y = a y = a
62 simpl x = 0 G y = a x = 0 G
63 62 oveq1d x = 0 G y = a x + ˙ z = 0 G + ˙ z
64 61 63 mpteq12dv x = 0 G y = a z y x + ˙ z = z a 0 G + ˙ z
65 64 rneqd x = 0 G y = a ran z y x + ˙ z = ran z a 0 G + ˙ z
66 vex a V
67 66 mptex z a 0 G + ˙ z V
68 67 rnex ran z a 0 G + ˙ z V
69 65 9 68 ovmpoa 0 G X a S 0 G ˙ a = ran z a 0 G + ˙ z
70 59 60 69 syl2anc φ a S 0 G ˙ a = ran z a 0 G + ˙ z
71 8 ssrab3 S 𝒫 X
72 71 60 sseldi φ a S a 𝒫 X
73 72 elpwid φ a S a X
74 73 sselda φ a S z a z X
75 1 7 57 grplid G Grp z X 0 G + ˙ z = z
76 56 74 75 syl2an2r φ a S z a 0 G + ˙ z = z
77 76 mpteq2dva φ a S z a 0 G + ˙ z = z a z
78 mptresid I a = z a z
79 77 78 syl6eqr φ a S z a 0 G + ˙ z = I a
80 79 rneqd φ a S ran z a 0 G + ˙ z = ran I a
81 rnresi ran I a = a
82 80 81 syl6eq φ a S ran z a 0 G + ˙ z = a
83 70 82 eqtrd φ a S 0 G ˙ a = a
84 ovex c + ˙ z V
85 oveq2 w = c + ˙ z b + ˙ w = b + ˙ c + ˙ z
86 84 85 abrexco u | w v | z a v = c + ˙ z u = b + ˙ w = u | z a u = b + ˙ c + ˙ z
87 simprr φ a S b X c X c X
88 60 adantr φ a S b X c X a S
89 simpr x = c y = a y = a
90 simpl x = c y = a x = c
91 90 oveq1d x = c y = a x + ˙ z = c + ˙ z
92 89 91 mpteq12dv x = c y = a z y x + ˙ z = z a c + ˙ z
93 92 rneqd x = c y = a ran z y x + ˙ z = ran z a c + ˙ z
94 66 mptex z a c + ˙ z V
95 94 rnex ran z a c + ˙ z V
96 93 9 95 ovmpoa c X a S c ˙ a = ran z a c + ˙ z
97 87 88 96 syl2anc φ a S b X c X c ˙ a = ran z a c + ˙ z
98 eqid z a c + ˙ z = z a c + ˙ z
99 98 rnmpt ran z a c + ˙ z = v | z a v = c + ˙ z
100 97 99 syl6eq φ a S b X c X c ˙ a = v | z a v = c + ˙ z
101 100 rexeqdv φ a S b X c X w c ˙ a u = b + ˙ w w v | z a v = c + ˙ z u = b + ˙ w
102 101 abbidv φ a S b X c X u | w c ˙ a u = b + ˙ w = u | w v | z a v = c + ˙ z u = b + ˙ w
103 56 ad2antrr φ a S b X c X z a G Grp
104 simprl φ a S b X c X b X
105 104 adantr φ a S b X c X z a b X
106 87 adantr φ a S b X c X z a c X
107 74 adantlr φ a S b X c X z a z X
108 1 7 grpass G Grp b X c X z X b + ˙ c + ˙ z = b + ˙ c + ˙ z
109 103 105 106 107 108 syl13anc φ a S b X c X z a b + ˙ c + ˙ z = b + ˙ c + ˙ z
110 109 eqeq2d φ a S b X c X z a u = b + ˙ c + ˙ z u = b + ˙ c + ˙ z
111 110 rexbidva φ a S b X c X z a u = b + ˙ c + ˙ z z a u = b + ˙ c + ˙ z
112 111 abbidv φ a S b X c X u | z a u = b + ˙ c + ˙ z = u | z a u = b + ˙ c + ˙ z
113 86 102 112 3eqtr4a φ a S b X c X u | w c ˙ a u = b + ˙ w = u | z a u = b + ˙ c + ˙ z
114 eqid w c ˙ a b + ˙ w = w c ˙ a b + ˙ w
115 114 rnmpt ran w c ˙ a b + ˙ w = u | w c ˙ a u = b + ˙ w
116 eqid z a b + ˙ c + ˙ z = z a b + ˙ c + ˙ z
117 116 rnmpt ran z a b + ˙ c + ˙ z = u | z a u = b + ˙ c + ˙ z
118 113 115 117 3eqtr4g φ a S b X c X ran w c ˙ a b + ˙ w = ran z a b + ˙ c + ˙ z
119 55 ad2antrr φ a S b X c X ˙ : X × S S
120 119 87 88 fovrnd φ a S b X c X c ˙ a S
121 simpr x = b y = c ˙ a y = c ˙ a
122 simpl x = b y = c ˙ a x = b
123 122 oveq1d x = b y = c ˙ a x + ˙ z = b + ˙ z
124 121 123 mpteq12dv x = b y = c ˙ a z y x + ˙ z = z c ˙ a b + ˙ z
125 oveq2 z = w b + ˙ z = b + ˙ w
126 125 cbvmptv z c ˙ a b + ˙ z = w c ˙ a b + ˙ w
127 124 126 syl6eq x = b y = c ˙ a z y x + ˙ z = w c ˙ a b + ˙ w
128 127 rneqd x = b y = c ˙ a ran z y x + ˙ z = ran w c ˙ a b + ˙ w
129 ovex c ˙ a V
130 129 mptex w c ˙ a b + ˙ w V
131 130 rnex ran w c ˙ a b + ˙ w V
132 128 9 131 ovmpoa b X c ˙ a S b ˙ c ˙ a = ran w c ˙ a b + ˙ w
133 104 120 132 syl2anc φ a S b X c X b ˙ c ˙ a = ran w c ˙ a b + ˙ w
134 2 ad2antrr φ a S b X c X G Grp
135 1 7 grpcl G Grp b X c X b + ˙ c X
136 134 104 87 135 syl3anc φ a S b X c X b + ˙ c X
137 simpr x = b + ˙ c y = a y = a
138 simpl x = b + ˙ c y = a x = b + ˙ c
139 138 oveq1d x = b + ˙ c y = a x + ˙ z = b + ˙ c + ˙ z
140 137 139 mpteq12dv x = b + ˙ c y = a z y x + ˙ z = z a b + ˙ c + ˙ z
141 140 rneqd x = b + ˙ c y = a ran z y x + ˙ z = ran z a b + ˙ c + ˙ z
142 66 mptex z a b + ˙ c + ˙ z V
143 142 rnex ran z a b + ˙ c + ˙ z V
144 141 9 143 ovmpoa b + ˙ c X a S b + ˙ c ˙ a = ran z a b + ˙ c + ˙ z
145 136 88 144 syl2anc φ a S b X c X b + ˙ c ˙ a = ran z a b + ˙ c + ˙ z
146 118 133 145 3eqtr4rd φ a S b X c X b + ˙ c ˙ a = b ˙ c ˙ a
147 146 ralrimivva φ a S b X c X b + ˙ c ˙ a = b ˙ c ˙ a
148 83 147 jca φ a S 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
149 148 ralrimiva φ a S 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
150 55 149 jca φ ˙ : X × S S a S 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
151 1 7 57 isga ˙ G GrpAct S G Grp S V ˙ : X × S S a S 0 G ˙ a = a b X c X b + ˙ c ˙ a = b ˙ c ˙ a
152 13 150 151 sylanbrc φ ˙ G GrpAct S