Metamath Proof Explorer


Theorem totbndbnd

Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd to only require that M be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +oo ) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion totbndbnd MTotBndXMBndX

Proof

Step Hyp Ref Expression
1 totbndmet MTotBndXMMetX
2 1rp 1+
3 istotbnd3 MTotBndXMMetXd+v𝒫XFinxvxballMd=X
4 3 simprbi MTotBndXd+v𝒫XFinxvxballMd=X
5 oveq2 d=1xballMd=xballM1
6 5 iuneq2d d=1xvxballMd=xvxballM1
7 6 eqeq1d d=1xvxballMd=XxvxballM1=X
8 7 rexbidv d=1v𝒫XFinxvxballMd=Xv𝒫XFinxvxballM1=X
9 8 rspcv 1+d+v𝒫XFinxvxballMd=Xv𝒫XFinxvxballM1=X
10 2 4 9 mpsyl MTotBndXv𝒫XFinxvxballM1=X
11 simplll MMetXyXv𝒫XFinxvxballM1=XzvMMetX
12 elfpw v𝒫XFinvXvFin
13 12 simplbi v𝒫XFinvX
14 13 ad2antrl MMetXyXv𝒫XFinxvxballM1=XvX
15 14 sselda MMetXyXv𝒫XFinxvxballM1=XzvzX
16 simpllr MMetXyXv𝒫XFinxvxballM1=XzvyX
17 metcl MMetXzXyXzMy
18 11 15 16 17 syl3anc MMetXyXv𝒫XFinxvxballM1=XzvzMy
19 metge0 MMetXzXyX0zMy
20 11 15 16 19 syl3anc MMetXyXv𝒫XFinxvxballM1=Xzv0zMy
21 18 20 ge0p1rpd MMetXyXv𝒫XFinxvxballM1=XzvzMy+1+
22 21 fmpttd MMetXyXv𝒫XFinxvxballM1=XzvzMy+1:v+
23 22 frnd MMetXyXv𝒫XFinxvxballM1=XranzvzMy+1+
24 12 simprbi v𝒫XFinvFin
25 mptfi vFinzvzMy+1Fin
26 rnfi zvzMy+1FinranzvzMy+1Fin
27 24 25 26 3syl v𝒫XFinranzvzMy+1Fin
28 27 ad2antrl MMetXyXv𝒫XFinxvxballM1=XranzvzMy+1Fin
29 simplr MMetXyXv𝒫XFinxvxballM1=XyX
30 simprr MMetXyXv𝒫XFinxvxballM1=XxvxballM1=X
31 29 30 eleqtrrd MMetXyXv𝒫XFinxvxballM1=XyxvxballM1
32 ne0i yxvxballM1xvxballM1
33 dm0rn0 domzvzMy+1=ranzvzMy+1=
34 ovex zMy+1V
35 eqid zvzMy+1=zvzMy+1
36 34 35 dmmpti domzvzMy+1=v
37 36 eqeq1i domzvzMy+1=v=
38 iuneq1 v=xvxballM1=xxballM1
39 37 38 sylbi domzvzMy+1=xvxballM1=xxballM1
40 0iun xxballM1=
41 39 40 eqtrdi domzvzMy+1=xvxballM1=
42 33 41 sylbir ranzvzMy+1=xvxballM1=
43 42 necon3i xvxballM1ranzvzMy+1
44 31 32 43 3syl MMetXyXv𝒫XFinxvxballM1=XranzvzMy+1
45 rpssre +
46 23 45 sstrdi MMetXyXv𝒫XFinxvxballM1=XranzvzMy+1
47 ltso <Or
48 fisupcl <OrranzvzMy+1FinranzvzMy+1ranzvzMy+1supranzvzMy+1<ranzvzMy+1
49 47 48 mpan ranzvzMy+1FinranzvzMy+1ranzvzMy+1supranzvzMy+1<ranzvzMy+1
50 28 44 46 49 syl3anc MMetXyXv𝒫XFinxvxballM1=XsupranzvzMy+1<ranzvzMy+1
51 23 50 sseldd MMetXyXv𝒫XFinxvxballM1=XsupranzvzMy+1<+
52 metxmet MMetXM∞MetX
53 52 ad2antrr MMetXyXv𝒫XFinxvxballM1=XM∞MetX
54 53 adantr MMetXyXv𝒫XFinxvxballM1=XzvM∞MetX
55 1red MMetXyXv𝒫XFinxvxballM1=Xzv1
56 46 50 sseldd MMetXyXv𝒫XFinxvxballM1=XsupranzvzMy+1<
57 56 adantr MMetXyXv𝒫XFinxvxballM1=XzvsupranzvzMy+1<
58 46 adantr MMetXyXv𝒫XFinxvxballM1=XzvranzvzMy+1
59 44 adantr MMetXyXv𝒫XFinxvxballM1=XzvranzvzMy+1
60 28 adantr MMetXyXv𝒫XFinxvxballM1=XzvranzvzMy+1Fin
61 fimaxre2 ranzvzMy+1ranzvzMy+1FindwranzvzMy+1wd
62 58 60 61 syl2anc MMetXyXv𝒫XFinxvxballM1=XzvdwranzvzMy+1wd
63 35 elrnmpt1 zvzMy+1VzMy+1ranzvzMy+1
64 34 63 mpan2 zvzMy+1ranzvzMy+1
65 64 adantl MMetXyXv𝒫XFinxvxballM1=XzvzMy+1ranzvzMy+1
66 suprub ranzvzMy+1ranzvzMy+1dwranzvzMy+1wdzMy+1ranzvzMy+1zMy+1supranzvzMy+1<
67 58 59 62 65 66 syl31anc MMetXyXv𝒫XFinxvxballM1=XzvzMy+1supranzvzMy+1<
68 leaddsub zMy1supranzvzMy+1<zMy+1supranzvzMy+1<zMysupranzvzMy+1<1
69 18 55 57 68 syl3anc MMetXyXv𝒫XFinxvxballM1=XzvzMy+1supranzvzMy+1<zMysupranzvzMy+1<1
70 67 69 mpbid MMetXyXv𝒫XFinxvxballM1=XzvzMysupranzvzMy+1<1
71 blss2 M∞MetXzXyX1supranzvzMy+1<zMysupranzvzMy+1<1zballM1yballMsupranzvzMy+1<
72 54 15 16 55 57 70 71 syl33anc MMetXyXv𝒫XFinxvxballM1=XzvzballM1yballMsupranzvzMy+1<
73 72 ralrimiva MMetXyXv𝒫XFinxvxballM1=XzvzballM1yballMsupranzvzMy+1<
74 nfcv _zxballM1
75 nfcv _zy
76 nfcv _zballM
77 nfmpt1 _zzvzMy+1
78 77 nfrn _zranzvzMy+1
79 nfcv _z
80 nfcv _z<
81 78 79 80 nfsup _zsupranzvzMy+1<
82 75 76 81 nfov _zyballMsupranzvzMy+1<
83 74 82 nfss zxballM1yballMsupranzvzMy+1<
84 nfv xzballM1yballMsupranzvzMy+1<
85 oveq1 x=zxballM1=zballM1
86 85 sseq1d x=zxballM1yballMsupranzvzMy+1<zballM1yballMsupranzvzMy+1<
87 83 84 86 cbvralw xvxballM1yballMsupranzvzMy+1<zvzballM1yballMsupranzvzMy+1<
88 73 87 sylibr MMetXyXv𝒫XFinxvxballM1=XxvxballM1yballMsupranzvzMy+1<
89 iunss xvxballM1yballMsupranzvzMy+1<xvxballM1yballMsupranzvzMy+1<
90 88 89 sylibr MMetXyXv𝒫XFinxvxballM1=XxvxballM1yballMsupranzvzMy+1<
91 30 90 eqsstrrd MMetXyXv𝒫XFinxvxballM1=XXyballMsupranzvzMy+1<
92 51 rpxrd MMetXyXv𝒫XFinxvxballM1=XsupranzvzMy+1<*
93 blssm M∞MetXyXsupranzvzMy+1<*yballMsupranzvzMy+1<X
94 53 29 92 93 syl3anc MMetXyXv𝒫XFinxvxballM1=XyballMsupranzvzMy+1<X
95 91 94 eqssd MMetXyXv𝒫XFinxvxballM1=XX=yballMsupranzvzMy+1<
96 oveq2 d=supranzvzMy+1<yballMd=yballMsupranzvzMy+1<
97 96 rspceeqv supranzvzMy+1<+X=yballMsupranzvzMy+1<d+X=yballMd
98 51 95 97 syl2anc MMetXyXv𝒫XFinxvxballM1=Xd+X=yballMd
99 98 rexlimdvaa MMetXyXv𝒫XFinxvxballM1=Xd+X=yballMd
100 99 ralrimdva MMetXv𝒫XFinxvxballM1=XyXd+X=yballMd
101 isbnd MBndXMMetXyXd+X=yballMd
102 101 baib MMetXMBndXyXd+X=yballMd
103 100 102 sylibrd MMetXv𝒫XFinxvxballM1=XMBndX
104 1 10 103 sylc MTotBndXMBndX