Metamath Proof Explorer


Theorem ttukeylem6

Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φF:cardAB1-1 ontoAB
ttukeylem.2 φBA
ttukeylem.3 φxxA𝒫xFinA
ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
Assertion ttukeylem6 φCsuccardABGCA

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φF:cardAB1-1 ontoAB
2 ttukeylem.2 φBA
3 ttukeylem.3 φxxA𝒫xFinA
4 ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
5 cardon cardABOn
6 5 onsuci succardABOn
7 6 a1i φsuccardABOn
8 onelon succardABOnCsuccardABCOn
9 7 8 sylan φCsuccardABCOn
10 eleq1 y=aysuccardABasuccardAB
11 fveq2 y=aGy=Ga
12 11 eleq1d y=aGyAGaA
13 10 12 imbi12d y=aysuccardABGyAasuccardABGaA
14 13 imbi2d y=aφysuccardABGyAφasuccardABGaA
15 eleq1 y=CysuccardABCsuccardAB
16 fveq2 y=CGy=GC
17 16 eleq1d y=CGyAGCA
18 15 17 imbi12d y=CysuccardABGyACsuccardABGCA
19 18 imbi2d y=CφysuccardABGyAφCsuccardABGCA
20 r19.21v ayφasuccardABGaAφayasuccardABGaA
21 6 onordi OrdsuccardAB
22 21 a1i φOrdsuccardAB
23 ordelss OrdsuccardABysuccardABysuccardAB
24 22 23 sylan φysuccardABysuccardAB
25 24 sselda φysuccardABayasuccardAB
26 biimt asuccardABGaAasuccardABGaA
27 25 26 syl φysuccardABayGaAasuccardABGaA
28 27 ralbidva φysuccardABayGaAayasuccardABGaA
29 6 onssi succardABOn
30 simprl φysuccardABayGaAysuccardAB
31 29 30 sselid φysuccardABayGaAyOn
32 1 2 3 4 ttukeylem3 φyOnGy=ify=yify=BGyGyifGyFyAFy
33 31 32 syldan φysuccardABayGaAGy=ify=yify=BGyGyifGyFyAFy
34 2 ad3antrrr φysuccardABayGaAy=yy=BA
35 simpr φysuccardABayGaAy=yw𝒫GyFinw𝒫GyFin
36 35 elin2d φysuccardABayGaAy=yw𝒫GyFinwFin
37 35 elin1d φysuccardABayGaAy=yw𝒫GyFinw𝒫Gy
38 37 elpwid φysuccardABayGaAy=yw𝒫GyFinwGy
39 4 tfr1 GFnOn
40 fnfun GFnOnFunG
41 funiunfv FunGvyGv=Gy
42 39 40 41 mp2b vyGv=Gy
43 38 42 sseqtrrdi φysuccardABayGaAy=yw𝒫GyFinwvyGv
44 dfss3 wvyGvuwuvyGv
45 eliun uvyGvvyuGv
46 45 ralbii uwuvyGvuwvyuGv
47 44 46 bitri wvyGvuwvyuGv
48 43 47 sylib φysuccardABayGaAy=yw𝒫GyFinuwvyuGv
49 fveq2 v=fuGv=Gfu
50 49 eleq2d v=fuuGvuGfu
51 50 ac6sfi wFinuwvyuGvff:wyuwuGfu
52 36 48 51 syl2anc φysuccardABayGaAy=yw𝒫GyFinff:wyuwuGfu
53 eleq1 w=wAA
54 simp-4l φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwφ
55 fveq2 a=ranfGa=Granf
56 55 eleq1d a=ranfGaAGranfA
57 simplrr φysuccardABayGaAy=yayGaA
58 57 ad2antrr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwayGaA
59 simprrl φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuf:wy
60 59 adantr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwf:wy
61 frn f:wyranfy
62 60 61 syl φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwranfy
63 31 ad3antrrr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwyOn
64 onss yOnyOn
65 63 64 syl φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwyOn
66 62 65 sstrd φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwranfOn
67 36 adantrr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwFin
68 67 adantr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwwFin
69 ffn f:wyfFnw
70 60 69 syl φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwfFnw
71 dffn4 fFnwf:wontoranf
72 70 71 sylib φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwf:wontoranf
73 fofi wFinf:wontoranfranfFin
74 68 72 73 syl2anc φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwranfFin
75 dm0rn0 domf=ranf=
76 59 fdmd φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfudomf=w
77 76 eqeq1d φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfudomf=w=
78 75 77 bitr3id φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuranf=w=
79 78 necon3bid φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuranfw
80 79 biimpar φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwranf
81 ordunifi ranfOnranfFinranfranfranf
82 66 74 80 81 syl3anc φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwranfranf
83 62 82 sseldd φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwranfy
84 56 58 83 rspcdva φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwGranfA
85 simp-4l φysuccardABayGaAy=yw𝒫GyFinf:wyuwφ
86 31 ad3antrrr φysuccardABayGaAy=yw𝒫GyFinf:wyuwyOn
87 86 64 syl φysuccardABayGaAy=yw𝒫GyFinf:wyuwyOn
88 ffvelcdm f:wyuwfuy
89 88 adantl φysuccardABayGaAy=yw𝒫GyFinf:wyuwfuy
90 87 89 sseldd φysuccardABayGaAy=yw𝒫GyFinf:wyuwfuOn
91 61 ad2antrl φysuccardABayGaAy=yw𝒫GyFinf:wyuwranfy
92 91 87 sstrd φysuccardABayGaAy=yw𝒫GyFinf:wyuwranfOn
93 vex fV
94 93 rnex ranfV
95 94 ssonunii ranfOnranfOn
96 92 95 syl φysuccardABayGaAy=yw𝒫GyFinf:wyuwranfOn
97 69 ad2antrl φysuccardABayGaAy=yw𝒫GyFinf:wyuwfFnw
98 simprr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuw
99 fnfvelrn fFnwuwfuranf
100 97 98 99 syl2anc φysuccardABayGaAy=yw𝒫GyFinf:wyuwfuranf
101 elssuni furanffuranf
102 100 101 syl φysuccardABayGaAy=yw𝒫GyFinf:wyuwfuranf
103 1 2 3 4 ttukeylem5 φfuOnranfOnfuranfGfuGranf
104 85 90 96 102 103 syl13anc φysuccardABayGaAy=yw𝒫GyFinf:wyuwGfuGranf
105 104 sseld φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuuGranf
106 105 anassrs φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuuGranf
107 106 ralimdva φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuuwuGranf
108 107 expimpd φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuuwuGranf
109 108 impr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuuwuGranf
110 109 adantr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwuwuGranf
111 dfss3 wGranfuwuGranf
112 110 111 sylibr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwwGranf
113 1 2 3 ttukeylem2 φGranfAwGranfwA
114 54 84 112 113 syl12anc φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwwA
115 0ss B
116 1 2 3 ttukeylem2 φBABA
117 115 116 mpanr2 φBAA
118 2 117 mpdan φA
119 118 ad3antrrr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuA
120 53 114 119 pm2.61ne φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwA
121 120 expr φysuccardABayGaAy=yw𝒫GyFinf:wyuwuGfuwA
122 121 exlimdv φysuccardABayGaAy=yw𝒫GyFinff:wyuwuGfuwA
123 52 122 mpd φysuccardABayGaAy=yw𝒫GyFinwA
124 123 ex φysuccardABayGaAy=yw𝒫GyFinwA
125 124 ssrdv φysuccardABayGaAy=y𝒫GyFinA
126 1 2 3 ttukeylem1 φGyA𝒫GyFinA
127 126 ad2antrr φysuccardABayGaAy=yGyA𝒫GyFinA
128 125 127 mpbird φysuccardABayGaAy=yGyA
129 128 adantr φysuccardABayGaAy=y¬y=GyA
130 34 129 ifclda φysuccardABayGaAy=yify=BGyA
131 uneq2 Fy=ifGyFyAFyGyFy=GyifGyFyAFy
132 131 eleq1d Fy=ifGyFyAFyGyFyAGyifGyFyAFyA
133 un0 Gy=Gy
134 uneq2 =ifGyFyAFyGy=GyifGyFyAFy
135 133 134 eqtr3id =ifGyFyAFyGy=GyifGyFyAFy
136 135 eleq1d =ifGyFyAFyGyAGyifGyFyAFyA
137 simpr φysuccardABayGaA¬y=yGyFyAGyFyA
138 fveq2 a=yGa=Gy
139 138 eleq1d a=yGaAGyA
140 simplrr φysuccardABayGaA¬y=yayGaA
141 vuniex yV
142 141 sucid ysucy
143 eloni yOnOrdy
144 orduniorsuc Ordyy=yy=sucy
145 31 143 144 3syl φysuccardABayGaAy=yy=sucy
146 145 orcanai φysuccardABayGaA¬y=yy=sucy
147 142 146 eleqtrrid φysuccardABayGaA¬y=yyy
148 139 140 147 rspcdva φysuccardABayGaA¬y=yGyA
149 148 adantr φysuccardABayGaA¬y=y¬GyFyAGyA
150 132 136 137 149 ifbothda φysuccardABayGaA¬y=yGyifGyFyAFyA
151 130 150 ifclda φysuccardABayGaAify=yify=BGyGyifGyFyAFyA
152 33 151 eqeltrd φysuccardABayGaAGyA
153 152 expr φysuccardABayGaAGyA
154 28 153 sylbird φysuccardABayasuccardABGaAGyA
155 154 ex φysuccardABayasuccardABGaAGyA
156 155 com23 φayasuccardABGaAysuccardABGyA
157 156 a2i φayasuccardABGaAφysuccardABGyA
158 20 157 sylbi ayφasuccardABGaAφysuccardABGyA
159 158 a1i yOnayφasuccardABGaAφysuccardABGyA
160 14 19 159 tfis3 COnφCsuccardABGCA
161 160 impd COnφCsuccardABGCA
162 9 161 mpcom φCsuccardABGCA