Metamath Proof Explorer


Theorem txtube

Description: The "tube lemma". If X is compact and there is an open set U containing the line X X. { A } , then there is a "tube" X X. u for some neighborhood u of A which is entirely contained within U . (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses txtube.x X = R
txtube.y Y = S
txtube.r φ R Comp
txtube.s φ S Top
txtube.w φ U R × t S
txtube.u φ X × A U
txtube.a φ A Y
Assertion txtube φ u S A u X × u U

Proof

Step Hyp Ref Expression
1 txtube.x X = R
2 txtube.y Y = S
3 txtube.r φ R Comp
4 txtube.s φ S Top
5 txtube.w φ U R × t S
6 txtube.u φ X × A U
7 txtube.a φ A Y
8 eleq1 y = x A y u × v x A u × v
9 8 anbi1d y = x A y u × v u × v U x A u × v u × v U
10 9 2rexbidv y = x A u R v S y u × v u × v U u R v S x A u × v u × v U
11 eltx R Comp S Top U R × t S y U u R v S y u × v u × v U
12 3 4 11 syl2anc φ U R × t S y U u R v S y u × v u × v U
13 5 12 mpbid φ y U u R v S y u × v u × v U
14 13 adantr φ x X y U u R v S y u × v u × v U
15 6 adantr φ x X X × A U
16 id x X x X
17 snidg A Y A A
18 7 17 syl φ A A
19 opelxpi x X A A x A X × A
20 16 18 19 syl2anr φ x X x A X × A
21 15 20 sseldd φ x X x A U
22 10 14 21 rspcdva φ x X u R v S x A u × v u × v U
23 opelxp x A u × v x u A v
24 23 anbi1i x A u × v u × v U x u A v u × v U
25 anass x u A v u × v U x u A v u × v U
26 24 25 bitri x A u × v u × v U x u A v u × v U
27 26 rexbii v S x A u × v u × v U v S x u A v u × v U
28 r19.42v v S x u A v u × v U x u v S A v u × v U
29 27 28 bitri v S x A u × v u × v U x u v S A v u × v U
30 29 rexbii u R v S x A u × v u × v U u R x u v S A v u × v U
31 22 30 sylib φ x X u R x u v S A v u × v U
32 31 ralrimiva φ x X u R x u v S A v u × v U
33 eleq2 v = f u A v A f u
34 xpeq2 v = f u u × v = u × f u
35 34 sseq1d v = f u u × v U u × f u U
36 33 35 anbi12d v = f u A v u × v U A f u u × f u U
37 1 36 cmpcovf R Comp x X u R x u v S A v u × v U t 𝒫 R Fin X = t f f : t S u t A f u u × f u U
38 3 32 37 syl2anc φ t 𝒫 R Fin X = t f f : t S u t A f u u × f u U
39 rint0 ran f = Y ran f = Y
40 39 adantl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f = Y ran f = Y
41 2 topopn S Top Y S
42 4 41 syl φ Y S
43 42 ad3antrrr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f = Y S
44 40 43 eqeltrd φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f = Y ran f S
45 4 ad3antrrr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f S Top
46 simprrl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U f : t S
47 46 frnd φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f S
48 47 adantr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f ran f S
49 simpr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f ran f
50 simplr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U t 𝒫 R Fin
51 50 elin2d φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U t Fin
52 46 ffnd φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U f Fn t
53 dffn4 f Fn t f : t onto ran f
54 52 53 sylib φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U f : t onto ran f
55 fofi t Fin f : t onto ran f ran f Fin
56 51 54 55 syl2anc φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f Fin
57 56 adantr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f ran f Fin
58 fiinopn S Top ran f S ran f ran f Fin ran f S
59 58 imp S Top ran f S ran f ran f Fin ran f S
60 45 48 49 57 59 syl13anc φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f ran f S
61 elssuni ran f S ran f S
62 60 61 syl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f ran f S
63 62 2 sseqtrrdi φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f ran f Y
64 sseqin2 ran f Y Y ran f = ran f
65 63 64 sylib φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f Y ran f = ran f
66 65 60 eqeltrd φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U ran f Y ran f S
67 44 66 pm2.61dane φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U Y ran f S
68 7 ad2antrr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U A Y
69 simprrr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u t A f u u × f u U
70 simpl A f u u × f u U A f u
71 70 ralimi u t A f u u × f u U u t A f u
72 69 71 syl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u t A f u
73 eliin A Y A u t f u u t A f u
74 68 73 syl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U A u t f u u t A f u
75 72 74 mpbird φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U A u t f u
76 fniinfv f Fn t u t f u = ran f
77 52 76 syl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u t f u = ran f
78 75 77 eleqtrd φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U A ran f
79 68 78 elind φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U A Y ran f
80 simprl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U X = t
81 uniiun t = u t u
82 80 81 eqtrdi φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U X = u t u
83 82 xpeq1d φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U X × Y ran f = u t u × Y ran f
84 xpiundir u t u × Y ran f = u t u × Y ran f
85 83 84 eqtrdi φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U X × Y ran f = u t u × Y ran f
86 simpr A f u u × f u U u × f u U
87 86 ralimi u t A f u u × f u U u t u × f u U
88 69 87 syl φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u t u × f u U
89 inss2 Y ran f ran f
90 76 adantr f Fn t u t u t f u = ran f
91 iinss2 u t u t f u f u
92 91 adantl f Fn t u t u t f u f u
93 90 92 eqsstrrd f Fn t u t ran f f u
94 89 93 sstrid f Fn t u t Y ran f f u
95 xpss2 Y ran f f u u × Y ran f u × f u
96 sstr2 u × Y ran f u × f u u × f u U u × Y ran f U
97 94 95 96 3syl f Fn t u t u × f u U u × Y ran f U
98 97 ralimdva f Fn t u t u × f u U u t u × Y ran f U
99 52 88 98 sylc φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u t u × Y ran f U
100 iunss u t u × Y ran f U u t u × Y ran f U
101 99 100 sylibr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u t u × Y ran f U
102 85 101 eqsstrd φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U X × Y ran f U
103 eleq2 u = Y ran f A u A Y ran f
104 xpeq2 u = Y ran f X × u = X × Y ran f
105 104 sseq1d u = Y ran f X × u U X × Y ran f U
106 103 105 anbi12d u = Y ran f A u X × u U A Y ran f X × Y ran f U
107 106 rspcev Y ran f S A Y ran f X × Y ran f U u S A u X × u U
108 67 79 102 107 syl12anc φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u S A u X × u U
109 108 expr φ t 𝒫 R Fin X = t f : t S u t A f u u × f u U u S A u X × u U
110 109 exlimdv φ t 𝒫 R Fin X = t f f : t S u t A f u u × f u U u S A u X × u U
111 110 expimpd φ t 𝒫 R Fin X = t f f : t S u t A f u u × f u U u S A u X × u U
112 111 rexlimdva φ t 𝒫 R Fin X = t f f : t S u t A f u u × f u U u S A u X × u U
113 38 112 mpd φ u S A u X × u U