Metamath Proof Explorer


Theorem vdwlem12

Description: Lemma for vdw . K = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdw.r φRFin
vdwlem12.f φF:1R+1R
vdwlem12.2 φ¬2MonoAPF
Assertion vdwlem12 ¬φ

Proof

Step Hyp Ref Expression
1 vdw.r φRFin
2 vdwlem12.f φF:1R+1R
3 vdwlem12.2 φ¬2MonoAPF
4 hashcl RFinR0
5 1 4 syl φR0
6 5 nn0red φR
7 6 ltp1d φR<R+1
8 nn0p1nn R0R+1
9 5 8 syl φR+1
10 9 nnnn0d φR+10
11 hashfz1 R+101R+1=R+1
12 10 11 syl φ1R+1=R+1
13 7 12 breqtrrd φR<1R+1
14 fzfi 1R+1Fin
15 hashsdom RFin1R+1FinR<1R+1R1R+1
16 1 14 15 sylancl φR<1R+1R1R+1
17 13 16 mpbid φR1R+1
18 fveq2 z=xFz=Fx
19 fveq2 w=yFw=Fy
20 18 19 eqeqan12d z=xw=yFz=FwFx=Fy
21 eqeq12 z=xw=yz=wx=y
22 20 21 imbi12d z=xw=yFz=Fwz=wFx=Fyx=y
23 fveq2 z=yFz=Fy
24 fveq2 w=xFw=Fx
25 23 24 eqeqan12d z=yw=xFz=FwFy=Fx
26 eqcom Fy=FxFx=Fy
27 25 26 bitrdi z=yw=xFz=FwFx=Fy
28 eqeq12 z=yw=xz=wy=x
29 eqcom y=xx=y
30 28 29 bitrdi z=yw=xz=wx=y
31 27 30 imbi12d z=yw=xFz=Fwz=wFx=Fyx=y
32 elfznn x1R+1x
33 32 nnred x1R+1x
34 33 ssriv 1R+1
35 34 a1i φ1R+1
36 biidd φx1R+1y1R+1Fx=Fyx=yFx=Fyx=y
37 simplr3 φx1R+1y1R+1xyFx=Fyxy
38 3 ad2antrr φx1R+1y1R+1xyFx=Fy¬2MonoAPF
39 3simpa x1R+1y1R+1xyx1R+1y1R+1
40 simplrl φx1R+1y1R+1Fx=Fyx<yx1R+1
41 40 32 syl φx1R+1y1R+1Fx=Fyx<yx
42 simprr φx1R+1y1R+1Fx=Fyx<yx<y
43 simplrr φx1R+1y1R+1Fx=Fyx<yy1R+1
44 elfznn y1R+1y
45 43 44 syl φx1R+1y1R+1Fx=Fyx<yy
46 nnsub xyx<yyx
47 41 45 46 syl2anc φx1R+1y1R+1Fx=Fyx<yx<yyx
48 42 47 mpbid φx1R+1y1R+1Fx=Fyx<yyx
49 df-2 2=1+1
50 49 fveq2i AP2=AP1+1
51 50 oveqi xAP2yx=xAP1+1yx
52 1nn0 10
53 vdwapun 10xyxxAP1+1yx=xx+y-xAP1yx
54 52 41 48 53 mp3an2i φx1R+1y1R+1Fx=Fyx<yxAP1+1yx=xx+y-xAP1yx
55 51 54 eqtrid φx1R+1y1R+1Fx=Fyx<yxAP2yx=xx+y-xAP1yx
56 simprl φx1R+1y1R+1Fx=Fyx<yFx=Fy
57 2 ad2antrr φx1R+1y1R+1Fx=Fyx<yF:1R+1R
58 57 ffnd φx1R+1y1R+1Fx=Fyx<yFFn1R+1
59 fniniseg FFn1R+1xF-1Fyx1R+1Fx=Fy
60 58 59 syl φx1R+1y1R+1Fx=Fyx<yxF-1Fyx1R+1Fx=Fy
61 40 56 60 mpbir2and φx1R+1y1R+1Fx=Fyx<yxF-1Fy
62 61 snssd φx1R+1y1R+1Fx=Fyx<yxF-1Fy
63 41 nncnd φx1R+1y1R+1Fx=Fyx<yx
64 45 nncnd φx1R+1y1R+1Fx=Fyx<yy
65 63 64 pncan3d φx1R+1y1R+1Fx=Fyx<yx+y-x=y
66 65 oveq1d φx1R+1y1R+1Fx=Fyx<yx+y-xAP1yx=yAP1yx
67 vdwap1 yyxyAP1yx=y
68 45 48 67 syl2anc φx1R+1y1R+1Fx=Fyx<yyAP1yx=y
69 66 68 eqtrd φx1R+1y1R+1Fx=Fyx<yx+y-xAP1yx=y
70 eqidd φx1R+1y1R+1Fx=Fyx<yFy=Fy
71 fniniseg FFn1R+1yF-1Fyy1R+1Fy=Fy
72 58 71 syl φx1R+1y1R+1Fx=Fyx<yyF-1Fyy1R+1Fy=Fy
73 43 70 72 mpbir2and φx1R+1y1R+1Fx=Fyx<yyF-1Fy
74 73 snssd φx1R+1y1R+1Fx=Fyx<yyF-1Fy
75 69 74 eqsstrd φx1R+1y1R+1Fx=Fyx<yx+y-xAP1yxF-1Fy
76 62 75 unssd φx1R+1y1R+1Fx=Fyx<yxx+y-xAP1yxF-1Fy
77 55 76 eqsstrd φx1R+1y1R+1Fx=Fyx<yxAP2yxF-1Fy
78 oveq1 a=xaAP2d=xAP2d
79 78 sseq1d a=xaAP2dF-1FyxAP2dF-1Fy
80 oveq2 d=yxxAP2d=xAP2yx
81 80 sseq1d d=yxxAP2dF-1FyxAP2yxF-1Fy
82 79 81 rspc2ev xyxxAP2yxF-1FyadaAP2dF-1Fy
83 41 48 77 82 syl3anc φx1R+1y1R+1Fx=Fyx<yadaAP2dF-1Fy
84 fvex FyV
85 sneq c=Fyc=Fy
86 85 imaeq2d c=FyF-1c=F-1Fy
87 86 sseq2d c=FyaAP2dF-1caAP2dF-1Fy
88 87 2rexbidv c=FyadaAP2dF-1cadaAP2dF-1Fy
89 84 88 spcev adaAP2dF-1FycadaAP2dF-1c
90 83 89 syl φx1R+1y1R+1Fx=Fyx<ycadaAP2dF-1c
91 ovex 1R+1V
92 2nn0 20
93 92 a1i φx1R+1y1R+1Fx=Fyx<y20
94 91 93 57 vdwmc φx1R+1y1R+1Fx=Fyx<y2MonoAPFcadaAP2dF-1c
95 90 94 mpbird φx1R+1y1R+1Fx=Fyx<y2MonoAPF
96 39 95 sylanl2 φx1R+1y1R+1xyFx=Fyx<y2MonoAPF
97 96 expr φx1R+1y1R+1xyFx=Fyx<y2MonoAPF
98 38 97 mtod φx1R+1y1R+1xyFx=Fy¬x<y
99 simplr1 φx1R+1y1R+1xyFx=Fyx1R+1
100 99 33 syl φx1R+1y1R+1xyFx=Fyx
101 simplr2 φx1R+1y1R+1xyFx=Fyy1R+1
102 34 101 sselid φx1R+1y1R+1xyFx=Fyy
103 100 102 eqleltd φx1R+1y1R+1xyFx=Fyx=yxy¬x<y
104 37 98 103 mpbir2and φx1R+1y1R+1xyFx=Fyx=y
105 104 ex φx1R+1y1R+1xyFx=Fyx=y
106 22 31 35 36 105 wlogle φx1R+1y1R+1Fx=Fyx=y
107 106 ralrimivva φx1R+1y1R+1Fx=Fyx=y
108 dff13 F:1R+11-1RF:1R+1Rx1R+1y1R+1Fx=Fyx=y
109 2 107 108 sylanbrc φF:1R+11-1R
110 f1domg RFinF:1R+11-1R1R+1R
111 1 109 110 sylc φ1R+1R
112 domnsym 1R+1R¬R1R+1
113 111 112 syl φ¬R1R+1
114 17 113 pm2.65i ¬φ