Metamath Proof Explorer


Theorem aks4d1p5

Description: Show that N and R are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024)

Ref Expression
Hypotheses aks4d1p5.1 φN3
aks4d1p5.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p5.3 B=log2N5
aks4d1p5.4 R=supr1B|¬rA<
aks4d1p5.5 φ1<NgcdRRNgcdRA¬RNgcdRA
Assertion aks4d1p5 φNgcdR=1

Proof

Step Hyp Ref Expression
1 aks4d1p5.1 φN3
2 aks4d1p5.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p5.3 B=log2N5
4 aks4d1p5.4 R=supr1B|¬rA<
5 aks4d1p5.5 φ1<NgcdRRNgcdRA¬RNgcdRA
6 simpr φ1<NgcdRRRNgcdRRRNgcdR
7 1 2 3 4 aks4d1p4 φR1B¬RA
8 7 simpld φR1B
9 elfznn R1BR
10 8 9 syl φR
11 10 nnred φR
12 eluzelz N3N
13 1 12 syl φN
14 0red φ0
15 3re 3
16 15 a1i φ3
17 13 zred φN
18 3pos 0<3
19 18 a1i φ0<3
20 eluzle N33N
21 1 20 syl φ3N
22 14 16 17 19 21 ltletrd φ0<N
23 13 22 jca φN0<N
24 elnnz NN0<N
25 23 24 sylibr φN
26 gcdnncl NRNgcdR
27 25 10 26 syl2anc φNgcdR
28 27 nnred φNgcdR
29 27 nnne0d φNgcdR0
30 11 28 29 redivcld φRNgcdR
31 30 adantr φ1<NgcdRRNgcdR
32 11 adantr φ1<NgcdRR
33 31 32 ltnled φ1<NgcdRRNgcdR<R¬RRNgcdR
34 33 biimprd φ1<NgcdR¬RRNgcdRRNgcdR<R
35 34 imp φ1<NgcdR¬RRNgcdRRNgcdR<R
36 4 a1i φ1<NgcdRR=supr1B|¬rA<
37 ssrab2 r1B|¬rA1B
38 37 a1i φr1B|¬rA1B
39 elfznn o1Bo
40 39 adantl φo1Bo
41 40 nnred φo1Bo
42 41 ex φo1Bo
43 42 ssrdv φ1B
44 38 43 sstrd φr1B|¬rA
45 44 adantr φ1<NgcdRr1B|¬rA
46 fzfid φ1BFin
47 46 38 ssfid φr1B|¬rAFin
48 47 adantr φ1<NgcdRr1B|¬rAFin
49 1 2 3 aks4d1p3 φr1B¬rA
50 rabn0 r1B|¬rAr1B¬rA
51 49 50 sylibr φr1B|¬rA
52 51 adantr φ1<NgcdRr1B|¬rA
53 fiminre r1B|¬rAr1B|¬rAFinr1B|¬rAxr1B|¬rAyr1B|¬rAxy
54 45 48 52 53 syl3anc φ1<NgcdRxr1B|¬rAyr1B|¬rAxy
55 breq1 r=RNgcdRrARNgcdRA
56 55 notbid r=RNgcdR¬rA¬RNgcdRA
57 1zzd φ1<NgcdR1
58 3 a1i φB=log2N5
59 2re 2
60 59 a1i φ2
61 2pos 0<2
62 61 a1i φ0<2
63 1red φ1
64 1lt2 1<2
65 64 a1i φ1<2
66 63 65 ltned φ12
67 66 necomd φ21
68 60 62 17 22 67 relogbcld φlog2N
69 5nn0 50
70 69 a1i φ50
71 68 70 reexpcld φlog2N5
72 ceilcl log2N5log2N5
73 71 72 syl φlog2N5
74 58 73 eqeltrd φB
75 74 adantr φ1<NgcdRB
76 25 nnzd φN
77 divgcdnnr RNRNgcdR
78 10 76 77 syl2anc φRNgcdR
79 78 adantr φ1<NgcdRRNgcdR
80 79 nnzd φ1<NgcdRRNgcdR
81 79 nnge1d φ1<NgcdR1RNgcdR
82 75 zred φ1<NgcdRB
83 10 nnrpd φR+
84 83 adantr φ1<NgcdRR+
85 27 nnrpd φNgcdR+
86 85 adantr φ1<NgcdRNgcdR+
87 32 recnd φ1<NgcdRR
88 84 rpne0d φ1<NgcdRR0
89 87 88 dividd φ1<NgcdRRR=1
90 simpr φ1<NgcdR1<NgcdR
91 89 90 eqbrtrd φ1<NgcdRRR<NgcdR
92 32 84 86 91 ltdiv23d φ1<NgcdRRNgcdR<R
93 31 32 92 ltled φ1<NgcdRRNgcdRR
94 elfzle2 R1BRB
95 8 94 syl φRB
96 95 adantr φ1<NgcdRRB
97 31 32 82 93 96 letrd φ1<NgcdRRNgcdRB
98 57 75 80 81 97 elfzd φ1<NgcdRRNgcdR1B
99 simpr φ1<NgcdR¬RNgcdRA¬RNgcdRA
100 exmidd φ1<NgcdRRNgcdRA¬RNgcdRA
101 5 99 100 mpjaodan φ1<NgcdR¬RNgcdRA
102 56 98 101 elrabd φ1<NgcdRRNgcdRr1B|¬rA
103 lbinfle r1B|¬rAxr1B|¬rAyr1B|¬rAxyRNgcdRr1B|¬rAsupr1B|¬rA<RNgcdR
104 45 54 102 103 syl3anc φ1<NgcdRsupr1B|¬rA<RNgcdR
105 36 104 eqbrtrd φ1<NgcdRRRNgcdR
106 32 31 lenltd φ1<NgcdRRRNgcdR¬RNgcdR<R
107 105 106 mpbid φ1<NgcdR¬RNgcdR<R
108 107 adantr φ1<NgcdR¬RRNgcdR¬RNgcdR<R
109 35 108 pm2.21dd φ1<NgcdR¬RRNgcdRRRNgcdR
110 6 109 pm2.61dan φ1<NgcdRRRNgcdR
111 83 rpred φR
112 111 adantr φ1<NgcdRR
113 92 107 pm2.21dd φ1<NgcdRNgcdR
114 113 nnrpd φ1<NgcdRNgcdR+
115 112 recnd φ1<NgcdRR
116 115 88 dividd φ1<NgcdRRR=1
117 116 90 eqbrtrd φ1<NgcdRRR<NgcdR
118 112 84 114 117 ltdiv23d φ1<NgcdRRNgcdR<R
119 78 nnred φRNgcdR
120 119 111 ltnled φRNgcdR<R¬RRNgcdR
121 120 adantr φ1<NgcdRRNgcdR<R¬RRNgcdR
122 118 121 mpbid φ1<NgcdR¬RRNgcdR
123 110 122 pm2.21dd φ1<NgcdRNgcdR=1
124 simpr φ¬1<NgcdRNgcdR=1NgcdR=1
125 27 adantr φ¬1<NgcdRNgcdR
126 125 nnred φ¬1<NgcdRNgcdR
127 126 adantr φ¬1<NgcdRNgcdR2NgcdR
128 59 a1i φ¬1<NgcdRNgcdR22
129 1red φ¬1<NgcdRNgcdR21
130 28 63 lenltd φNgcdR1¬1<NgcdR
131 130 biimprd φ¬1<NgcdRNgcdR1
132 131 imp φ¬1<NgcdRNgcdR1
133 132 adantr φ¬1<NgcdRNgcdR2NgcdR1
134 64 a1i φ¬1<NgcdRNgcdR21<2
135 127 129 128 133 134 lelttrd φ¬1<NgcdRNgcdR2NgcdR<2
136 eluzle NgcdR22NgcdR
137 136 adantl φ¬1<NgcdRNgcdR22NgcdR
138 127 128 127 135 137 ltletrd φ¬1<NgcdRNgcdR2NgcdR<NgcdR
139 127 ltnrd φ¬1<NgcdRNgcdR2¬NgcdR<NgcdR
140 138 139 pm2.21dd φ¬1<NgcdRNgcdR2NgcdR=1
141 elnn1uz2 NgcdRNgcdR=1NgcdR2
142 125 141 sylib φ¬1<NgcdRNgcdR=1NgcdR2
143 124 140 142 mpjaodan φ¬1<NgcdRNgcdR=1
144 123 143 pm2.61dan φNgcdR=1