| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p5.1 |
|
| 2 |
|
aks4d1p5.2 |
|
| 3 |
|
aks4d1p5.3 |
|
| 4 |
|
aks4d1p5.4 |
|
| 5 |
|
aks4d1p5.5 |
|
| 6 |
|
simpr |
|
| 7 |
1 2 3 4
|
aks4d1p4 |
|
| 8 |
7
|
simpld |
|
| 9 |
|
elfznn |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
nnred |
|
| 12 |
|
eluzelz |
|
| 13 |
1 12
|
syl |
|
| 14 |
|
0red |
|
| 15 |
|
3re |
|
| 16 |
15
|
a1i |
|
| 17 |
13
|
zred |
|
| 18 |
|
3pos |
|
| 19 |
18
|
a1i |
|
| 20 |
|
eluzle |
|
| 21 |
1 20
|
syl |
|
| 22 |
14 16 17 19 21
|
ltletrd |
|
| 23 |
13 22
|
jca |
|
| 24 |
|
elnnz |
|
| 25 |
23 24
|
sylibr |
|
| 26 |
|
gcdnncl |
|
| 27 |
25 10 26
|
syl2anc |
|
| 28 |
27
|
nnred |
|
| 29 |
27
|
nnne0d |
|
| 30 |
11 28 29
|
redivcld |
|
| 31 |
30
|
adantr |
|
| 32 |
11
|
adantr |
|
| 33 |
31 32
|
ltnled |
|
| 34 |
33
|
biimprd |
|
| 35 |
34
|
imp |
|
| 36 |
4
|
a1i |
|
| 37 |
|
ssrab2 |
|
| 38 |
37
|
a1i |
|
| 39 |
|
elfznn |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
nnred |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
ssrdv |
|
| 44 |
38 43
|
sstrd |
|
| 45 |
44
|
adantr |
|
| 46 |
|
fzfid |
|
| 47 |
46 38
|
ssfid |
|
| 48 |
47
|
adantr |
|
| 49 |
1 2 3
|
aks4d1p3 |
|
| 50 |
|
rabn0 |
|
| 51 |
49 50
|
sylibr |
|
| 52 |
51
|
adantr |
|
| 53 |
|
fiminre |
|
| 54 |
45 48 52 53
|
syl3anc |
|
| 55 |
|
breq1 |
|
| 56 |
55
|
notbid |
|
| 57 |
|
1zzd |
|
| 58 |
3
|
a1i |
|
| 59 |
|
2re |
|
| 60 |
59
|
a1i |
|
| 61 |
|
2pos |
|
| 62 |
61
|
a1i |
|
| 63 |
|
1red |
|
| 64 |
|
1lt2 |
|
| 65 |
64
|
a1i |
|
| 66 |
63 65
|
ltned |
|
| 67 |
66
|
necomd |
|
| 68 |
60 62 17 22 67
|
relogbcld |
|
| 69 |
|
5nn0 |
|
| 70 |
69
|
a1i |
|
| 71 |
68 70
|
reexpcld |
|
| 72 |
|
ceilcl |
|
| 73 |
71 72
|
syl |
|
| 74 |
58 73
|
eqeltrd |
|
| 75 |
74
|
adantr |
|
| 76 |
25
|
nnzd |
|
| 77 |
|
divgcdnnr |
|
| 78 |
10 76 77
|
syl2anc |
|
| 79 |
78
|
adantr |
|
| 80 |
79
|
nnzd |
|
| 81 |
79
|
nnge1d |
|
| 82 |
75
|
zred |
|
| 83 |
10
|
nnrpd |
|
| 84 |
83
|
adantr |
|
| 85 |
27
|
nnrpd |
|
| 86 |
85
|
adantr |
|
| 87 |
32
|
recnd |
|
| 88 |
84
|
rpne0d |
|
| 89 |
87 88
|
dividd |
|
| 90 |
|
simpr |
|
| 91 |
89 90
|
eqbrtrd |
|
| 92 |
32 84 86 91
|
ltdiv23d |
|
| 93 |
31 32 92
|
ltled |
|
| 94 |
|
elfzle2 |
|
| 95 |
8 94
|
syl |
|
| 96 |
95
|
adantr |
|
| 97 |
31 32 82 93 96
|
letrd |
|
| 98 |
57 75 80 81 97
|
elfzd |
|
| 99 |
|
simpr |
|
| 100 |
|
exmidd |
|
| 101 |
5 99 100
|
mpjaodan |
|
| 102 |
56 98 101
|
elrabd |
|
| 103 |
|
lbinfle |
|
| 104 |
45 54 102 103
|
syl3anc |
|
| 105 |
36 104
|
eqbrtrd |
|
| 106 |
32 31
|
lenltd |
|
| 107 |
105 106
|
mpbid |
|
| 108 |
107
|
adantr |
|
| 109 |
35 108
|
pm2.21dd |
|
| 110 |
6 109
|
pm2.61dan |
|
| 111 |
83
|
rpred |
|
| 112 |
111
|
adantr |
|
| 113 |
92 107
|
pm2.21dd |
|
| 114 |
113
|
nnrpd |
|
| 115 |
112
|
recnd |
|
| 116 |
115 88
|
dividd |
|
| 117 |
116 90
|
eqbrtrd |
|
| 118 |
112 84 114 117
|
ltdiv23d |
|
| 119 |
78
|
nnred |
|
| 120 |
119 111
|
ltnled |
|
| 121 |
120
|
adantr |
|
| 122 |
118 121
|
mpbid |
|
| 123 |
110 122
|
pm2.21dd |
|
| 124 |
|
simpr |
|
| 125 |
27
|
adantr |
|
| 126 |
125
|
nnred |
|
| 127 |
126
|
adantr |
|
| 128 |
59
|
a1i |
|
| 129 |
|
1red |
|
| 130 |
28 63
|
lenltd |
|
| 131 |
130
|
biimprd |
|
| 132 |
131
|
imp |
|
| 133 |
132
|
adantr |
|
| 134 |
64
|
a1i |
|
| 135 |
127 129 128 133 134
|
lelttrd |
|
| 136 |
|
eluzle |
|
| 137 |
136
|
adantl |
|
| 138 |
127 128 127 135 137
|
ltletrd |
|
| 139 |
127
|
ltnrd |
|
| 140 |
138 139
|
pm2.21dd |
|
| 141 |
|
elnn1uz2 |
|
| 142 |
125 141
|
sylib |
|
| 143 |
124 140 142
|
mpjaodan |
|
| 144 |
123 143
|
pm2.61dan |
|