Metamath Proof Explorer


Theorem axcontlem8

Description: Lemma for axcont . A point in D is between two others if its function value falls in the middle. (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypotheses axcontlem8.1 D=p𝔼N|UBtwnZppBtwnZU
axcontlem8.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
Assertion axcontlem8 NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRQBtwnPR

Proof

Step Hyp Ref Expression
1 axcontlem8.1 D=p𝔼N|UBtwnZppBtwnZU
2 axcontlem8.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
3 1 2 axcontlem6 NZ𝔼NU𝔼NZUPDFP0+∞i1NPi=1FPZi+FPUi
4 3 ex NZ𝔼NU𝔼NZUPDFP0+∞i1NPi=1FPZi+FPUi
5 1 2 axcontlem6 NZ𝔼NU𝔼NZUQDFQ0+∞i1NQi=1FQZi+FQUi
6 5 ex NZ𝔼NU𝔼NZUQDFQ0+∞i1NQi=1FQZi+FQUi
7 1 2 axcontlem6 NZ𝔼NU𝔼NZURDFR0+∞i1NRi=1FRZi+FRUi
8 7 ex NZ𝔼NU𝔼NZURDFR0+∞i1NRi=1FRZi+FRUi
9 4 6 8 3anim123d NZ𝔼NU𝔼NZUPDQDRDFP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFR0+∞i1NRi=1FRZi+FRUi
10 9 imp NZ𝔼NU𝔼NZUPDQDRDFP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFR0+∞i1NRi=1FRZi+FRUi
11 10 adantr NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRFP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFR0+∞i1NRi=1FRZi+FRUi
12 3an6 FP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFR0+∞i1NRi=1FRZi+FRUiFP0+∞FQ0+∞FR0+∞i1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUi
13 0elunit 001
14 simplr1 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFP0+∞
15 14 ad2antlr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP0+∞
16 elrege0 FP0+∞FP0FP
17 16 simplbi FP0+∞FP
18 15 17 syl FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP
19 18 recnd FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP
20 simprrl FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFPFQ
21 20 adantr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFPFQ
22 simprrr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFR
23 simpl FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFP=FR
24 22 23 breqtrrd FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFP
25 24 adantr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFQFP
26 simplr2 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQ0+∞
27 26 ad2antlr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFQ0+∞
28 elrege0 FQ0+∞FQ0FQ
29 28 simplbi FQ0+∞FQ
30 27 29 syl FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFQ
31 18 30 letri3d FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP=FQFPFQFQFP
32 21 25 31 mpbir2and FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP=FQ
33 simpll FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP=FR
34 simpll2 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞Z𝔼N
35 34 adantr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRZ𝔼N
36 35 ad2antlr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NZ𝔼N
37 fveecn Z𝔼Ni1NZi
38 36 37 sylancom FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NZi
39 simpll3 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞U𝔼N
40 39 adantr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRU𝔼N
41 40 ad2antlr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NU𝔼N
42 fveecn U𝔼Ni1NUi
43 41 42 sylancom FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NUi
44 ax-1cn 1
45 simpl FPZiUiFP
46 subcl 1FP1FP
47 44 45 46 sylancr FPZiUi1FP
48 simprl FPZiUiZi
49 47 48 mulcld FPZiUi1FPZi
50 mulcl FPUiFPUi
51 50 adantrl FPZiUiFPUi
52 49 51 addcld FPZiUi1FPZi+FPUi
53 52 mullidd FPZiUi11FPZi+FPUi=1FPZi+FPUi
54 52 mul02d FPZiUi01FPZi+FPUi=0
55 53 54 oveq12d FPZiUi11FPZi+FPUi+01FPZi+FPUi=1FPZi+FPUi+0
56 52 addridd FPZiUi1FPZi+FPUi+0=1FPZi+FPUi
57 55 56 eqtr2d FPZiUi1FPZi+FPUi=11FPZi+FPUi+01FPZi+FPUi
58 57 3adant2 FPFP=FQFP=FRZiUi1FPZi+FPUi=11FPZi+FPUi+01FPZi+FPUi
59 oveq2 FP=FQ1FP=1FQ
60 59 oveq1d FP=FQ1FPZi=1FQZi
61 oveq1 FP=FQFPUi=FQUi
62 60 61 oveq12d FP=FQ1FPZi+FPUi=1FQZi+FQUi
63 oveq2 FP=FR1FP=1FR
64 63 oveq1d FP=FR1FPZi=1FRZi
65 oveq1 FP=FRFPUi=FRUi
66 64 65 oveq12d FP=FR1FPZi+FPUi=1FRZi+FRUi
67 66 oveq2d FP=FR01FPZi+FPUi=01FRZi+FRUi
68 67 oveq2d FP=FR11FPZi+FPUi+01FPZi+FPUi=11FPZi+FPUi+01FRZi+FRUi
69 62 68 eqeqan12d FP=FQFP=FR1FPZi+FPUi=11FPZi+FPUi+01FPZi+FPUi1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
70 69 3ad2ant2 FPFP=FQFP=FRZiUi1FPZi+FPUi=11FPZi+FPUi+01FPZi+FPUi1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
71 58 70 mpbid FPFP=FQFP=FRZiUi1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
72 19 32 33 38 43 71 syl122anc FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1N1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
73 72 ralrimiva FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1N1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
74 oveq2 t=01t=10
75 1m0e1 10=1
76 74 75 eqtrdi t=01t=1
77 76 oveq1d t=01t1FPZi+FPUi=11FPZi+FPUi
78 oveq1 t=0t1FRZi+FRUi=01FRZi+FRUi
79 77 78 oveq12d t=01t1FPZi+FPUi+t1FRZi+FRUi=11FPZi+FPUi+01FRZi+FRUi
80 79 eqeq2d t=01FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
81 80 ralbidv t=0i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUii1N1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUi
82 81 rspcev 001i1N1FQZi+FQUi=11FPZi+FPUi+01FRZi+FRUit01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
83 13 73 82 sylancr FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRt01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
84 83 ex FP=FRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRt01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
85 26 adantl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQ0+∞
86 85 29 syl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQ
87 simplr3 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFR0+∞
88 87 adantl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFR0+∞
89 elrege0 FR0+∞FR0FR
90 89 simplbi FR0+∞FR
91 88 90 syl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFR
92 14 adantl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFP0+∞
93 92 17 syl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFP
94 simprrr FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFR
95 86 91 93 94 lesub1dd FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFPFRFP
96 86 93 resubcld FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFP
97 simprrl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFPFQ
98 86 93 subge0d FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFR0FQFPFPFQ
99 97 98 mpbird FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFR0FQFP
100 91 93 resubcld FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFRFP
101 93 86 91 97 94 letrd FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFPFR
102 simpl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFPFR
103 102 necomd FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFRFP
104 93 91 101 103 leneltd FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFP<FR
105 93 91 posdifd FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFP<FR0<FRFP
106 104 105 mpbid FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFR0<FRFP
107 divelunit FQFP0FQFPFRFP0<FRFPFQFPFRFP01FQFPFRFP
108 96 99 100 106 107 syl22anc FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFPFRFP01FQFPFRFP
109 95 108 mpbird FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRFQFPFRFP01
110 14 ad2antlr FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP0+∞
111 17 recnd FP0+∞FP
112 110 111 syl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFP
113 simpll FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFPFR
114 26 ad2antlr FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFQ0+∞
115 29 recnd FQ0+∞FQ
116 114 115 syl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFQ
117 87 ad2antlr FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFR0+∞
118 90 recnd FR0+∞FR
119 117 118 syl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NFR
120 34 ad2antrl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRZ𝔼N
121 120 37 sylan FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NZi
122 39 ad2antrl FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRU𝔼N
123 122 42 sylan FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NUi
124 simp2r FPFPFRFQFRZiUiFR
125 simp2l FPFPFRFQFRZiUiFQ
126 124 125 subcld FPFPFRFQFRZiUiFRFQ
127 simp1l FPFPFRFQFRZiUiFP
128 44 127 46 sylancr FPFPFRFQFRZiUi1FP
129 126 128 mulcld FPFPFRFQFRZiUiFRFQ1FP
130 125 127 subcld FPFPFRFQFRZiUiFQFP
131 subcl 1FR1FR
132 44 124 131 sylancr FPFPFRFQFRZiUi1FR
133 130 132 mulcld FPFPFRFQFRZiUiFQFP1FR
134 124 127 subcld FPFPFRFQFRZiUiFRFP
135 simp1r FPFPFRFQFRZiUiFPFR
136 135 necomd FPFPFRFQFRZiUiFRFP
137 124 127 136 subne0d FPFPFRFQFRZiUiFRFP0
138 129 133 134 137 divdird FPFPFRFQFRZiUiFRFQ1FP+FQFP1FRFRFP=FRFQ1FPFRFP+FQFP1FRFRFP
139 134 mulridd FPFPFRFQFRZiUiFRFP1=FRFP
140 134 125 mulcomd FPFPFRFQFRZiUiFRFPFQ=FQFRFP
141 125 124 127 subdid FPFPFRFQFRZiUiFQFRFP=FQFRFQFP
142 140 141 eqtrd FPFPFRFQFRZiUiFRFPFQ=FQFRFQFP
143 139 142 oveq12d FPFPFRFQFRZiUiFRFP1FRFPFQ=FR-FP-FQFRFQFP
144 subdi FRFP1FQFRFP1FQ=FRFP1FRFPFQ
145 44 144 mp3an2 FRFPFQFRFP1FQ=FRFP1FRFPFQ
146 134 125 145 syl2anc FPFPFRFQFRZiUiFRFP1FQ=FRFP1FRFPFQ
147 subdi FRFQ1FPFRFQ1FP=FRFQ1FRFQFP
148 44 147 mp3an2 FRFQFPFRFQ1FP=FRFQ1FRFQFP
149 126 127 148 syl2anc FPFPFRFQFRZiUiFRFQ1FP=FRFQ1FRFQFP
150 126 mulridd FPFPFRFQFRZiUiFRFQ1=FRFQ
151 124 125 127 subdird FPFPFRFQFRZiUiFRFQFP=FRFPFQFP
152 124 127 mulcomd FPFPFRFQFRZiUiFRFP=FPFR
153 152 oveq1d FPFPFRFQFRZiUiFRFPFQFP=FPFRFQFP
154 151 153 eqtrd FPFPFRFQFRZiUiFRFQFP=FPFRFQFP
155 150 154 oveq12d FPFPFRFQFRZiUiFRFQ1FRFQFP=FR-FQ-FPFRFQFP
156 149 155 eqtrd FPFPFRFQFRZiUiFRFQ1FP=FR-FQ-FPFRFQFP
157 subdi FQFP1FRFQFP1FR=FQFP1FQFPFR
158 44 157 mp3an2 FQFPFRFQFP1FR=FQFP1FQFPFR
159 130 124 158 syl2anc FPFPFRFQFRZiUiFQFP1FR=FQFP1FQFPFR
160 130 mulridd FPFPFRFQFRZiUiFQFP1=FQFP
161 125 127 124 subdird FPFPFRFQFRZiUiFQFPFR=FQFRFPFR
162 160 161 oveq12d FPFPFRFQFRZiUiFQFP1FQFPFR=FQ-FP-FQFRFPFR
163 159 162 eqtrd FPFPFRFQFRZiUiFQFP1FR=FQ-FP-FQFRFPFR
164 156 163 oveq12d FPFPFRFQFRZiUiFRFQ1FP+FQFP1FR=FR-FQ-FPFRFQFP+FQFP-FQFRFPFR
165 127 124 mulcld FPFPFRFQFRZiUiFPFR
166 125 127 mulcld FPFPFRFQFRZiUiFQFP
167 165 166 subcld FPFPFRFQFRZiUiFPFRFQFP
168 mulcl FQFRFQFR
169 168 3ad2ant2 FPFPFRFQFRZiUiFQFR
170 169 165 subcld FPFPFRFQFRZiUiFQFRFPFR
171 126 130 167 170 addsub4d FPFPFRFQFRZiUiFRFQ+FQFP-FPFRFQFP+FQFR-FPFR=FR-FQ-FPFRFQFP+FQFP-FQFRFPFR
172 124 125 127 npncand FPFPFRFQFRZiUiFRFQ+FQ-FP=FRFP
173 165 166 169 npncan3d FPFPFRFQFRZiUiFPFRFQFP+FQFR-FPFR=FQFRFQFP
174 172 173 oveq12d FPFPFRFQFRZiUiFRFQ+FQFP-FPFRFQFP+FQFR-FPFR=FR-FP-FQFRFQFP
175 164 171 174 3eqtr2d FPFPFRFQFRZiUiFRFQ1FP+FQFP1FR=FR-FP-FQFRFQFP
176 143 146 175 3eqtr4d FPFPFRFQFRZiUiFRFP1FQ=FRFQ1FP+FQFP1FR
177 129 133 addcld FPFPFRFQFRZiUiFRFQ1FP+FQFP1FR
178 subcl 1FQ1FQ
179 44 125 178 sylancr FPFPFRFQFRZiUi1FQ
180 177 134 179 137 divmuld FPFPFRFQFRZiUiFRFQ1FP+FQFP1FRFRFP=1FQFRFP1FQ=FRFQ1FP+FQFP1FR
181 176 180 mpbird FPFPFRFQFRZiUiFRFQ1FP+FQFP1FRFRFP=1FQ
182 126 128 134 137 div23d FPFPFRFQFRZiUiFRFQ1FPFRFP=FRFQFRFP1FP
183 134 130 134 137 divsubdird FPFPFRFQFRZiUiFR-FP-FQFPFRFP=FRFPFRFPFQFPFRFP
184 124 125 127 nnncan2d FPFPFRFQFRZiUiFR-FP-FQFP=FRFQ
185 184 oveq1d FPFPFRFQFRZiUiFR-FP-FQFPFRFP=FRFQFRFP
186 134 137 dividd FPFPFRFQFRZiUiFRFPFRFP=1
187 186 oveq1d FPFPFRFQFRZiUiFRFPFRFPFQFPFRFP=1FQFPFRFP
188 183 185 187 3eqtr3d FPFPFRFQFRZiUiFRFQFRFP=1FQFPFRFP
189 188 oveq1d FPFPFRFQFRZiUiFRFQFRFP1FP=1FQFPFRFP1FP
190 182 189 eqtrd FPFPFRFQFRZiUiFRFQ1FPFRFP=1FQFPFRFP1FP
191 130 132 134 137 div23d FPFPFRFQFRZiUiFQFP1FRFRFP=FQFPFRFP1FR
192 190 191 oveq12d FPFPFRFQFRZiUiFRFQ1FPFRFP+FQFP1FRFRFP=1FQFPFRFP1FP+FQFPFRFP1FR
193 138 181 192 3eqtr3d FPFPFRFQFRZiUi1FQ=1FQFPFRFP1FP+FQFPFRFP1FR
194 193 oveq1d FPFPFRFQFRZiUi1FQZi=1FQFPFRFP1FP+FQFPFRFP1FRZi
195 126 127 mulcld FPFPFRFQFRZiUiFRFQFP
196 130 124 mulcld FPFPFRFQFRZiUiFQFPFR
197 195 196 134 137 divdird FPFPFRFQFRZiUiFRFQFP+FQFPFRFRFP=FRFQFPFRFP+FQFPFRFRFP
198 154 161 oveq12d FPFPFRFQFRZiUiFRFQFP+FQFPFR=FPFRFQFP+FQFR-FPFR
199 173 198 142 3eqtr4rd FPFPFRFQFRZiUiFRFPFQ=FRFQFP+FQFPFR
200 195 196 addcld FPFPFRFQFRZiUiFRFQFP+FQFPFR
201 200 134 125 137 divmuld FPFPFRFQFRZiUiFRFQFP+FQFPFRFRFP=FQFRFPFQ=FRFQFP+FQFPFR
202 199 201 mpbird FPFPFRFQFRZiUiFRFQFP+FQFPFRFRFP=FQ
203 126 127 134 137 div23d FPFPFRFQFRZiUiFRFQFPFRFP=FRFQFRFPFP
204 188 oveq1d FPFPFRFQFRZiUiFRFQFRFPFP=1FQFPFRFPFP
205 203 204 eqtrd FPFPFRFQFRZiUiFRFQFPFRFP=1FQFPFRFPFP
206 130 124 134 137 div23d FPFPFRFQFRZiUiFQFPFRFRFP=FQFPFRFPFR
207 205 206 oveq12d FPFPFRFQFRZiUiFRFQFPFRFP+FQFPFRFRFP=1FQFPFRFPFP+FQFPFRFPFR
208 197 202 207 3eqtr3d FPFPFRFQFRZiUiFQ=1FQFPFRFPFP+FQFPFRFPFR
209 208 oveq1d FPFPFRFQFRZiUiFQUi=1FQFPFRFPFP+FQFPFRFPFRUi
210 194 209 oveq12d FPFPFRFQFRZiUi1FQZi+FQUi=1FQFPFRFP1FP+FQFPFRFP1FRZi+1FQFPFRFPFP+FQFPFRFPFRUi
211 130 134 137 divcld FPFPFRFQFRZiUiFQFPFRFP
212 subcl 1FQFPFRFP1FQFPFRFP
213 44 211 212 sylancr FPFPFRFQFRZiUi1FQFPFRFP
214 simp3l FPFPFRFQFRZiUiZi
215 128 214 mulcld FPFPFRFQFRZiUi1FPZi
216 213 215 mulcld FPFPFRFQFRZiUi1FQFPFRFP1FPZi
217 132 214 mulcld FPFPFRFQFRZiUi1FRZi
218 211 217 mulcld FPFPFRFQFRZiUiFQFPFRFP1FRZi
219 simp3r FPFPFRFQFRZiUiUi
220 127 219 mulcld FPFPFRFQFRZiUiFPUi
221 213 220 mulcld FPFPFRFQFRZiUi1FQFPFRFPFPUi
222 124 219 mulcld FPFPFRFQFRZiUiFRUi
223 211 222 mulcld FPFPFRFQFRZiUiFQFPFRFPFRUi
224 216 218 221 223 add4d FPFPFRFQFRZiUi1FQFPFRFP1FPZi+FQFPFRFP1FRZi+1FQFPFRFPFPUi+FQFPFRFPFRUi=1FQFPFRFP1FPZi+1FQFPFRFPFPUi+FQFPFRFP1FRZi+FQFPFRFPFRUi
225 213 128 mulcld FPFPFRFQFRZiUi1FQFPFRFP1FP
226 211 132 mulcld FPFPFRFQFRZiUiFQFPFRFP1FR
227 213 128 214 mulassd FPFPFRFQFRZiUi1FQFPFRFP1FPZi=1FQFPFRFP1FPZi
228 211 132 214 mulassd FPFPFRFQFRZiUiFQFPFRFP1FRZi=FQFPFRFP1FRZi
229 227 228 oveq12d FPFPFRFQFRZiUi1FQFPFRFP1FPZi+FQFPFRFP1FRZi=1FQFPFRFP1FPZi+FQFPFRFP1FRZi
230 225 214 226 229 joinlmuladdmuld FPFPFRFQFRZiUi1FQFPFRFP1FP+FQFPFRFP1FRZi=1FQFPFRFP1FPZi+FQFPFRFP1FRZi
231 213 127 mulcld FPFPFRFQFRZiUi1FQFPFRFPFP
232 211 124 mulcld FPFPFRFQFRZiUiFQFPFRFPFR
233 213 127 219 mulassd FPFPFRFQFRZiUi1FQFPFRFPFPUi=1FQFPFRFPFPUi
234 211 124 219 mulassd FPFPFRFQFRZiUiFQFPFRFPFRUi=FQFPFRFPFRUi
235 233 234 oveq12d FPFPFRFQFRZiUi1FQFPFRFPFPUi+FQFPFRFPFRUi=1FQFPFRFPFPUi+FQFPFRFPFRUi
236 231 219 232 235 joinlmuladdmuld FPFPFRFQFRZiUi1FQFPFRFPFP+FQFPFRFPFRUi=1FQFPFRFPFPUi+FQFPFRFPFRUi
237 230 236 oveq12d FPFPFRFQFRZiUi1FQFPFRFP1FP+FQFPFRFP1FRZi+1FQFPFRFPFP+FQFPFRFPFRUi=1FQFPFRFP1FPZi+FQFPFRFP1FRZi+1FQFPFRFPFPUi+FQFPFRFPFRUi
238 213 215 220 adddid FPFPFRFQFRZiUi1FQFPFRFP1FPZi+FPUi=1FQFPFRFP1FPZi+1FQFPFRFPFPUi
239 211 217 222 adddid FPFPFRFQFRZiUiFQFPFRFP1FRZi+FRUi=FQFPFRFP1FRZi+FQFPFRFPFRUi
240 238 239 oveq12d FPFPFRFQFRZiUi1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi=1FQFPFRFP1FPZi+1FQFPFRFPFPUi+FQFPFRFP1FRZi+FQFPFRFPFRUi
241 224 237 240 3eqtr4rd FPFPFRFQFRZiUi1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi=1FQFPFRFP1FP+FQFPFRFP1FRZi+1FQFPFRFPFP+FQFPFRFPFRUi
242 210 241 eqtr4d FPFPFRFQFRZiUi1FQZi+FQUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi
243 112 113 116 119 121 123 242 syl222anc FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1N1FQZi+FQUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi
244 243 ralrimiva FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1N1FQZi+FQUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi
245 oveq2 t=FQFPFRFP1t=1FQFPFRFP
246 245 oveq1d t=FQFPFRFP1t1FPZi+FPUi=1FQFPFRFP1FPZi+FPUi
247 oveq1 t=FQFPFRFPt1FRZi+FRUi=FQFPFRFP1FRZi+FRUi
248 246 247 oveq12d t=FQFPFRFP1t1FPZi+FPUi+t1FRZi+FRUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi
249 248 eqeq2d t=FQFPFRFP1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi1FQZi+FQUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi
250 249 ralbidv t=FQFPFRFPi1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUii1N1FQZi+FQUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUi
251 250 rspcev FQFPFRFP01i1N1FQZi+FQUi=1FQFPFRFP1FPZi+FPUi+FQFPFRFP1FRZi+FRUit01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
252 109 244 251 syl2anc FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRt01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
253 252 ex FPFRNZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRt01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
254 84 253 pm2.61ine NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRt01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
255 r19.26-3 i1NPi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUii1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUi
256 simp2 Pi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUiQi=1FQZi+FQUi
257 oveq2 Pi=1FPZi+FPUi1tPi=1t1FPZi+FPUi
258 oveq2 Ri=1FRZi+FRUitRi=t1FRZi+FRUi
259 257 258 oveqan12d Pi=1FPZi+FPUiRi=1FRZi+FRUi1tPi+tRi=1t1FPZi+FPUi+t1FRZi+FRUi
260 259 3adant2 Pi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUi1tPi+tRi=1t1FPZi+FPUi+t1FRZi+FRUi
261 256 260 eqeq12d Pi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUiQi=1tPi+tRi1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
262 261 ralimi i1NPi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUii1NQi=1tPi+tRi1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
263 ralbi i1NQi=1tPi+tRi1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUii1NQi=1tPi+tRii1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
264 262 263 syl i1NPi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUii1NQi=1tPi+tRii1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
265 264 rexbidv i1NPi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUit01i1NQi=1tPi+tRit01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUi
266 265 biimprcd t01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUii1NPi=1FPZi+FPUiQi=1FQZi+FQUiRi=1FRZi+FRUit01i1NQi=1tPi+tRi
267 255 266 biimtrrid t01i1N1FQZi+FQUi=1t1FPZi+FPUi+t1FRZi+FRUii1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUit01i1NQi=1tPi+tRi
268 254 267 syl NZ𝔼NU𝔼NZUFP0+∞FQ0+∞FR0+∞FPFQFQFRi1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUit01i1NQi=1tPi+tRi
269 268 an32s NZ𝔼NU𝔼NZUFPFQFQFRFP0+∞FQ0+∞FR0+∞i1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUit01i1NQi=1tPi+tRi
270 269 expimpd NZ𝔼NU𝔼NZUFPFQFQFRFP0+∞FQ0+∞FR0+∞i1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUit01i1NQi=1tPi+tRi
271 270 adantlr NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRFP0+∞FQ0+∞FR0+∞i1NPi=1FPZi+FPUii1NQi=1FQZi+FQUii1NRi=1FRZi+FRUit01i1NQi=1tPi+tRi
272 12 271 biimtrid NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRFP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFR0+∞i1NRi=1FRZi+FRUit01i1NQi=1tPi+tRi
273 11 272 mpd NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRt01i1NQi=1tPi+tRi
274 simpl1 NZ𝔼NU𝔼NZUN
275 1 ssrab3 D𝔼N
276 275 sseli QDQ𝔼N
277 275 sseli PDP𝔼N
278 275 sseli RDR𝔼N
279 276 277 278 3anim123i QDPDRDQ𝔼NP𝔼NR𝔼N
280 279 3com12 PDQDRDQ𝔼NP𝔼NR𝔼N
281 brbtwn Q𝔼NP𝔼NR𝔼NQBtwnPRt01i1NQi=1tPi+tRi
282 281 adantl NQ𝔼NP𝔼NR𝔼NQBtwnPRt01i1NQi=1tPi+tRi
283 274 280 282 syl2an NZ𝔼NU𝔼NZUPDQDRDQBtwnPRt01i1NQi=1tPi+tRi
284 283 adantr NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRQBtwnPRt01i1NQi=1tPi+tRi
285 273 284 mpbird NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRQBtwnPR
286 285 ex NZ𝔼NU𝔼NZUPDQDRDFPFQFQFRQBtwnPR